Inoue R, Ito Y
Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
Am J Physiol Cell Physiol. 2000 Nov;279(5):C1307-18. doi: 10.1152/ajpcell.2000.279.5.C1307.
The effects of intracellular nucleotide triphosphates on time-dependent changes in muscarinic receptor cation currents (I(cat)) were investigated using the whole cell patch-clamp technique in guinea pig ileal muscle. In the absence of nucleotide phosphates in the patch pipette, I(cat) evoked every 10 min decayed progressively. This decay was slowed dose dependently by inclusion of millimolar concentrations of ATP in the pipette. This required a comparable concentration of Mg(2+), was mimicked by UTP and CTP, and was attenuated by simultaneous application of alkaline phosphatase or inhibitors of tyrosine kinase. In contrast, a sudden photolytic release of millimolar ATP (probably in the free form) caused a marked suppression of I(cat). Submillimolar concentrations of GTP dose dependently increased the amplitude of I(cat) as long as ATP and Mg(2+) were in the pipette, but, in their absence, GTP was ineffective at preventing I(cat) decay. The decay of I(cat) was paralleled by altered voltage-dependent gating, i.e., a positive shift in the activation curve and reduction in the maximal conductance. It is thus likely that ATP exerts two reciprocal actions on I(cat), through Mg(2+)-dependent and -independent mechanisms, and that the enhancing effect of GTP on I(cat) is essentially different from that of ATP.