Tripathy G
Instituut-Lorentz, Universiteit Leiden, Postbus 9506, 2300 RA Leiden, The Netherlands.
Phys Rev Lett. 2000 Oct 23;85(17):3556-9. doi: 10.1103/PhysRevLett.85.3556.
We argue that while fluctuating fronts propagating into an unstable state should be in the standard Kardar-Parisi-Zhang (KPZ) universality class when they are pushed, they should not when they are pulled: The 1/t velocity relaxation of deterministic pulled fronts makes it unlikely that the KPZ equation is their proper effective long-wavelength low-frequency theory. Simulations in 2D confirm the proposed scenario, and yield exponents beta approximately 0.29+/-0.01, zeta approximately 0.40+/-0.02 for fluctuating pulled fronts, instead of the (1+1)D KPZ values beta = 1/3, zeta = 1/2. Our value of beta is consistent with an earlier result of Riordan et al., and with a recent conjecture that the exponents are the (2+1)D KPZ values.
我们认为,当波动前沿传播到不稳定状态时,如果是被推动的,它们应该属于标准的 Kardar-Parisi-Zhang(KPZ)普适类,但如果是被拉动的,则不然:确定性拉动前沿的 1/t 速度弛豫使得 KPZ 方程不太可能是其合适的有效长波长低频理论。二维模拟证实了所提出的情形,并得出波动拉动前沿的指数β约为 0.29±0.01,ζ约为 0.40±0.02,而不是(1+1)维 KPZ 值β = 1/3,ζ = 1/2。我们的β值与 Riordan 等人早期的结果一致,也与最近关于指数是(2+1)维 KPZ 值的猜想一致。