Mukamel S
Department of Chemistry, University of Rochester, PO Box 270216, Rochester, New York 14627-0216, USA.
Annu Rev Phys Chem. 2000;51:691-729. doi: 10.1146/annurev.physchem.51.1.691.
Femtosecond visible and infrared analogues of multiple-pulse nuclear magnetic resonance techniques provide novel snapshot probes into the structure and electronic and vibrational dynamics of complex molecular assemblies such as photosynthetic antennae, proteins, and hydrogen-bonded liquids. A classical-oscillator description of these spectroscopies in terms of interacting quasiparticles (rather than transitions among global eigenstates) is developed and sets the stage for designing new pulse sequences and inverting the multidimensional signals to yield molecular structures. Considerable computational advantages and a clear physical insight into the origin of the response and the relevant coherence sizes are provided by a real-space analysis of the underlying coherence-transfer pathways in Liouville space.
多脉冲核磁共振技术的飞秒可见和红外类似技术为研究复杂分子聚集体(如光合天线、蛋白质和氢键液体)的结构、电子和振动动力学提供了新型的快照探测方法。本文发展了一种基于相互作用准粒子(而非全局本征态间的跃迁)的经典振荡器对这些光谱的描述,为设计新的脉冲序列和反转多维信号以获得分子结构奠定了基础。通过对刘维尔空间中潜在相干转移路径的实空间分析,提供了可观的计算优势以及对响应起源和相关相干尺寸的清晰物理洞察。