Suppr超能文献

通过表达MSP2嵌合体实现边缘无形体的抗原变异。

Antigenic variation of Anaplasma marginale by expression of MSP2 mosaics.

作者信息

Barbet A F, Lundgren A, Yi J, Rurangirwa F R, Palmer G H

机构信息

Department of Pathobiology, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611-0880, USA.

出版信息

Infect Immun. 2000 Nov;68(11):6133-8. doi: 10.1128/IAI.68.11.6133-6138.2000.

Abstract

Anaplasma marginale is a tick-borne pathogen, one of several closely related ehrlichial organisms that cause disease in animals and humans. These Ehrlichia species have complex life cycles that require, in addition to replication and development within the tick vector, evasion of the immune system in order to persist in the mammalian reservoir host. This complexity requires efficient use of the small ehrlichial genome. A. marginale and related ehrlichiae express immunoprotective, variable outer membrane proteins that have similar structures and are encoded by polymorphic multigene families. We show here that the major outer membrane protein of A. marginale, MSP2, is encoded on a polycistronic mRNA. The genomic expression site for this mRNA is polymorphic and encodes numerous amino acid sequence variants in bloodstream populations of A. marginale. A potential mechanism for persistence is segmental gene conversion of the expression site to link hypervariable msp2 sequences to the promoter and polycistron.

摘要

边缘无形体是一种蜱传病原体,是几种密切相关的埃立克体生物之一,可导致动物和人类患病。这些埃立克体物种具有复杂的生命周期,除了在蜱传播媒介内进行复制和发育外,还需要逃避免疫系统才能在哺乳动物储存宿主中持续存在。这种复杂性需要高效利用微小的埃立克体基因组。边缘无形体和相关的埃立克体表达具有相似结构且由多态性多基因家族编码的免疫保护性可变外膜蛋白。我们在此表明,边缘无形体的主要外膜蛋白MSP2由多顺反子mRNA编码。该mRNA的基因组表达位点具有多态性,并且在边缘无形体的血流群体中编码众多氨基酸序列变体。持续存在的一种潜在机制是表达位点的片段基因转换,将高变msp2序列与启动子和多顺反子连接起来。

相似文献

1
Antigenic variation of Anaplasma marginale by expression of MSP2 mosaics.
Infect Immun. 2000 Nov;68(11):6133-8. doi: 10.1128/IAI.68.11.6133-6138.2000.
5
Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion.
Mol Microbiol. 2002 Mar;43(5):1151-9. doi: 10.1046/j.1365-2958.2002.02792.x.
6
Emergence of Anaplasma marginale antigenic variants during persistent rickettsemia.
Infect Immun. 1999 Nov;67(11):5834-40. doi: 10.1128/IAI.67.11.5834-5840.1999.
9
Primary Structural Variation in Anaplasma marginale Msp2 Efficiently Generates Immune Escape Variants.
Infect Immun. 2015 Nov;83(11):4178-84. doi: 10.1128/IAI.00851-15. Epub 2015 Aug 10.

引用本文的文献

1
A review of bovine anaplasmosis () with emphasis on epidemiology and diagnostic testing.
J Vet Diagn Invest. 2025 Mar 28:10406387251324180. doi: 10.1177/10406387251324180.
2
Generation of Population-Level Diversity in Gene Repertoires Through Recombination.
Pathogens. 2025 Feb 27;14(3):233. doi: 10.3390/pathogens14030233.
3
Experimental Infection of North American Sheep with .
Pathogens. 2021 Apr 9;10(4):451. doi: 10.3390/pathogens10040451.
4
Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit?
Int J Parasitol. 2019 Feb;49(2):183-197. doi: 10.1016/j.ijpara.2018.11.002. Epub 2019 Jan 26.
5
Structural Basis for Recombinatorial Permissiveness in the Generation of Anaplasma marginale Msp2 Antigenic Variants.
Infect Immun. 2016 Sep 19;84(10):2740-7. doi: 10.1128/IAI.00391-16. Print 2016 Oct.
6
Antigenic Variation in Bacterial Pathogens.
Microbiol Spectr. 2016 Feb;4(1). doi: 10.1128/microbiolspec.VMBF-0005-2015.
7
Mini-review: Strategies for Variation and Evolution of Bacterial Antigens.
Comput Struct Biotechnol J. 2015 Jul 26;13:407-16. doi: 10.1016/j.csbj.2015.07.002. eCollection 2015.
8
Association of Anaplasma marginale strain superinfection with infection prevalence within tropical regions.
PLoS One. 2015 Mar 20;10(3):e0120748. doi: 10.1371/journal.pone.0120748. eCollection 2015.
9
Antigenic variation and transmission fitness as drivers of bacterial strain structure.
Cell Microbiol. 2013 Dec;15(12):1969-75. doi: 10.1111/cmi.12182. Epub 2013 Aug 28.
10
Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies.
Front Cell Infect Microbiol. 2013 Jul 22;3:31. doi: 10.3389/fcimb.2013.00031. eCollection 2013.

本文引用的文献

1
The importance of mosaic genes to trypanosome survival.
Parasitol Today. 1993 Feb;9(2):63-6. doi: 10.1016/0169-4758(93)90039-i.
3
Emergence of Anaplasma marginale antigenic variants during persistent rickettsemia.
Infect Immun. 1999 Nov;67(11):5834-40. doi: 10.1128/IAI.67.11.5834-5840.1999.
4
Determination of the genome size of Ehrlichia spp., using pulsed field gel electrophoresis.
FEMS Microbiol Lett. 1999 Jul 1;176(1):73-8. doi: 10.1111/j.1574-6968.1999.tb13644.x.
5
Molecular basis for vaccine development against the ehrlichial pathogen Anaplasma marginale.
Parasitol Today. 1999 Jul;15(7):281-6. doi: 10.1016/s0169-4758(99)01469-6.
7
The map1 gene of Cowdria ruminantium is a member of a multigene family containing both conserved and variable genes.
Biochem Biophys Res Commun. 1999 Apr 13;257(2):300-5. doi: 10.1006/bbrc.1999.0459.
8
Restriction of major surface protein 2 (MSP2) variants during tick transmission of the ehrlichia Anaplasma marginale.
Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3171-6. doi: 10.1073/pnas.96.6.3171.
9
The genome sequence of Rickettsia prowazekii and the origin of mitochondria.
Nature. 1998 Nov 12;396(6707):133-40. doi: 10.1038/24094.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验