Suppr超能文献

生物素与生物素结构域翻译后连接过程中蛋白质底物呈递的突变分析。

Mutational analysis of protein substrate presentation in the post-translational attachment of biotin to biotin domains.

作者信息

Polyak S W, Chapman-Smith A, Mulhern T D, Cronan J E, Wallace J C

机构信息

Department of Biochemistry, University of Adelaide, South Australia 5005, Australia.

出版信息

J Biol Chem. 2001 Feb 2;276(5):3037-45. doi: 10.1074/jbc.M003968200. Epub 2000 Oct 19.

Abstract

Biotinylation in vivo is an extremely selective post-translational event where the enzyme biotin protein ligase (BPL) catalyzes the covalent attachment of biotin to one specific and conserved lysine residue of biotin-dependent enzymes. The biotin-accepting lysine, present in a conserved Met-Lys-Met motif, resides in a structured domain that functions as the BPL substrate. We have employed phage display coupled with a genetic selection to identify determinants of the biotin domain (yPC-104) of yeast pyruvate carboxylase 1 (residues 1075-1178) required for interaction with BPL. Mutants isolated using this strategy were analyzed by in vivo biotinylation assays performed at both 30 degrees C and 37 degrees C. The temperature-sensitive substrates were reasoned to have structural mutations, leading to compromised conformations at the higher temperature. This interpretation was supplemented by molecular modeling of yPC-104, since these mutants mapped to residues involved in defining the structure of the biotin domain. In contrast, substitution of the Met residue N-terminal to the target lysine with either Val or Thr produced mutations that were temperature-insensitive in the in vivo assay. Furthermore, these two mutant proteins and wild-type yPC-104 showed identical susceptibility to trypsin, consistent with these substitutions having no structural effect. Kinetic analysis of enzymatic biotinylation using purified Met --> Thr/Val mutant proteins with both yeast and Escherichia coli BPLs revealed that these substitutions had a strong effect upon K(m) values but not k(cat). The Met --> Thr mutant was a poor substrate for both BPLs, whereas the Met --> Val substitution was a poor substrate for bacterial BPL but had only a 2-fold lower affinity for yeast BPL than the wild-type peptide. Our data suggest that substitution of Thr or Val for the Met N-terminal of the biotinyl-Lys results in mutants specifically compromised in their interaction with BPL.

摘要

体内生物素化是一种极具选择性的翻译后事件,其中生物素蛋白连接酶(BPL)催化生物素与生物素依赖性酶的一个特定且保守的赖氨酸残基共价连接。存在于保守的甲硫氨酸 - 赖氨酸 - 甲硫氨酸基序中的生物素接受赖氨酸,位于一个作为BPL底物的结构化结构域中。我们利用噬菌体展示结合遗传筛选来鉴定酵母丙酮酸羧化酶1(残基1075 - 1178)的生物素结构域(yPC - 104)与BPL相互作用所需的决定因素。使用该策略分离出的突变体通过在30℃和37℃下进行的体内生物素化测定进行分析。温度敏感底物被认为具有结构突变,导致在较高温度下构象受损。由于这些突变体映射到参与定义生物素结构域结构的残基,因此通过yPC - 104的分子建模对这一解释进行了补充。相比之下,用缬氨酸或苏氨酸取代靶赖氨酸N端的甲硫氨酸产生的突变在体内测定中对温度不敏感。此外,这两种突变蛋白和野生型yPC - 104对胰蛋白酶的敏感性相同,这与这些取代没有结构效应一致。使用纯化的甲硫氨酸→苏氨酸/缬氨酸突变蛋白与酵母和大肠杆菌BPL进行酶促生物素化的动力学分析表明,这些取代对K(m)值有强烈影响,但对k(cat)没有影响。甲硫氨酸→苏氨酸突变体对两种BPL都是不良底物,而甲硫氨酸→缬氨酸取代对细菌BPL是不良底物,但对酵母BPL的亲和力仅比野生型肽低2倍。我们的数据表明,用苏氨酸或缬氨酸取代生物素化赖氨酸的N端甲硫氨酸会导致突变体在与BPL的相互作用中特别受损。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验