Germinario R J, Continelli L, Pratt S
Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2.
Proc Soc Exp Biol Med. 2000 Nov;225(2):116-22. doi: 10.1046/j.1525-1373.2000.22514.x.
In this report, we have characterized the upregulation of glucose transport in two different respiration-deficient fibroblast cell cultures. We have demonstrated that glucose transport increases in respiration-deficient cells as measured by 2 deoxy D-glucose transport and is readily observed in both the WG750 human and G14 Chinese hamster fibroblast respiration-deficient cell lines when compared with the MCH55 normal human and V79 parental Chinese hamster cell lines, respectively. Using subcellular fractionation techniques, the GLUT 1 glucose transporter was found located predominantly in the plasma membrane-enriched fraction of the human and hamster cell lines. In human cells, the expression of the GLUT 1 glucose transporter was elevated three-fold in the plasma membrane-enriched fraction of the WG750 respiration-deficient mutant cells. In the Chinese hamster cell lines, the respiration-deficient G14 cells exhibited no such GLUT 1 glucose transporter elevation in the plasma membrane-enriched fraction, yet expressed a >2-fold increase in glucose transport. Furthermore, the G14 cells had a similar content of GLUT 1 glucose transporter in the plasma membrane fraction when compared with the V79 parental cell line. Using Western blot analysis, the GLUT 1 glucose transporter in G14 cells exhibited a different mobility on a polyacrylamide gel when compared with the mobility of the GLUT 1 glucose transporter of the V79 cell line. This differential mobility of the glucose transporters in the hamster cells appeared to be related to glycosylation differences of the glucose transporters. Although normal human and hamster cell lines exhibited significant increases in insulin-stimulated sugar transport (P < 0.05), the two respective respiration-deficient cell lines exhibited no significant increases in insulin-stimulated sugar transport (P > 0.05). Additionally, the expression of the GLUT 1 mRNA in the human WG750 mutant cells was elevated when compared with GLUT 1 mRNA in normal cells. Insulin exposure significantly increased GLUT 1 mRNA in human cells (P < 0.05). No differences in the GLUT 1 mRNA were observed between both hamster cell lines. Thus, both respiration-deficient cell lines are insulin resistant (i.e., regarding their insulin-stimulated sugar transport). The respiration-deficient mutation results in an increased sugar transport in the human and hamster cells; however, the human cells adapt to the mutation by increasing their levels of GLUT 1 mRNA and eventually membrane-located glucose transporters. On the other hand, the hamster cells adapt by apparently modifying their glucose transporters' intrinsic activity via glycosylation. We feel that these cell systems can be effective models to study the multiple factors involved in sugar transport regulation in vertebrate cells.
在本报告中,我们描述了两种不同的呼吸缺陷型成纤维细胞培养物中葡萄糖转运的上调情况。我们已经证明,通过2-脱氧-D-葡萄糖转运测定,呼吸缺陷型细胞中的葡萄糖转运增加,并且在WG750人源和G14中国仓鼠成纤维细胞呼吸缺陷型细胞系中均易于观察到,分别与MCH55正常人源和V79亲本中国仓鼠细胞系相比。使用亚细胞分级分离技术,发现GLUT 1葡萄糖转运蛋白主要位于人源和仓鼠细胞系富含质膜的部分。在人源细胞中,WG750呼吸缺陷型突变细胞富含质膜的部分中GLUT 1葡萄糖转运蛋白的表达升高了三倍。在中国仓鼠细胞系中,呼吸缺陷型G14细胞在富含质膜的部分中未表现出这种GLUT 1葡萄糖转运蛋白的升高,但葡萄糖转运增加了>2倍。此外,与V79亲本细胞系相比,G14细胞在质膜部分中GLUT 1葡萄糖转运蛋白的含量相似。使用蛋白质免疫印迹分析,与V79细胞系的GLUT 1葡萄糖转运蛋白在聚丙烯酰胺凝胶上的迁移率相比,G14细胞中的GLUT 1葡萄糖转运蛋白表现出不同的迁移率。仓鼠细胞中葡萄糖转运蛋白的这种差异迁移率似乎与葡萄糖转运蛋白的糖基化差异有关。虽然正常人源和仓鼠细胞系在胰岛素刺激的糖转运方面表现出显著增加(P < 0.05),但两种相应的呼吸缺陷型细胞系在胰岛素刺激的糖转运方面未表现出显著增加(P > 0.05)。此外,与正常细胞中的GLUT 1 mRNA相比,人源WG750突变细胞中GLUT 1 mRNA的表达升高。胰岛素暴露显著增加了人源细胞中的GLUT 1 mRNA(P < 0.05)。在两种仓鼠细胞系之间未观察到GLUT 1 mRNA的差异。因此,两种呼吸缺陷型细胞系均具有胰岛素抵抗性(即,就其胰岛素刺激的糖转运而言)。呼吸缺陷型突变导致人源和仓鼠细胞中的糖转运增加;然而,人源细胞通过增加其GLUT 1 mRNA水平并最终增加膜定位的葡萄糖转运蛋白来适应突变。另一方面,仓鼠细胞通过明显通过糖基化修饰其葡萄糖转运蛋白的内在活性来适应。我们认为这些细胞系统可以成为研究脊椎动物细胞中糖转运调节所涉及的多种因素的有效模型。