Kuznetsov EA, Ruban VP
Landau Institute for Theoretical Physics, 2 Kosygin Street, 117334 Moscow, Russia.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):831-41. doi: 10.1103/physreve.61.831.
Vortex line and magnetic line representations are introduced for a description of flows in ideal hydrodynamics and magnetohydrodynamics (MHD), respectively. For incompressible fluids, it is shown with the help of this transformation that the equations of motion for vorticity Omega and magnetic field follow from a variational principle. By means of this representation, it is possible to integrate the hydrodynamic type system with the Hamiltonian H=integral|Omega|dr and some other systems. It is also demonstrated that these representations allow one to remove from the noncanonical Poisson brackets, defined in the space of divergence-free vector fields, the degeneracy connected with the vorticity frozenness for the Euler equation and with magnetic field frozenness for ideal MHD. For MHD, a new Weber-type transformation is found. It is shown how this transformation can be obtained from the two-fluid model when electrons and ions can be considered as two independent fluids. The Weber-type transformation for ideal MHD gives the whole Lagrangian vector invariant. When this invariant is absent, this transformation coincides with the Clebsch representation analog introduced by V.E. Zakharov and E. A. Kuznetsov [Dokl. Ajad. Nauk 194, 1288 (1970) [Sov. Phys. Dokl. 15, 913 (1971)]].
分别引入涡旋线和磁力线表示法来描述理想流体动力学和磁流体动力学(MHD)中的流动。对于不可压缩流体,借助这种变换表明,涡度Ω和磁场的运动方程源自变分原理。通过这种表示法,可以对具有哈密顿量H = ∫|Ω|dr的流体动力学类型系统以及其他一些系统进行积分。还证明了这些表示法能够消除在无散度矢量场空间中定义的非规范泊松括号中,与欧拉方程的涡度冻结以及理想磁流体动力学的磁场冻结相关的简并性。对于磁流体动力学,找到了一种新的韦伯型变换。展示了这种变换如何从双流体模型中得到,此时电子和离子可被视为两种独立的流体。理想磁流体动力学的韦伯型变换给出了整个拉格朗日矢量不变量。当不存在这个不变量时,这种变换与V.E. 扎哈罗夫和E.A. 库兹涅佐夫引入的克莱布施表示类似物一致[《苏联科学院通报》194, 1288 (1970) [《苏联物理学报》15, 913 (1971)]]。