Suppr超能文献

大鼠伤害性初级感觉神经元中热诱发内向电流的失活和快速耐受性

Inactivation and tachyphylaxis of heat-evoked inward currents in nociceptive primary sensory neurones of rats.

作者信息

Schwarz S, Greffrath W, Büsselberg D, Treede R D

机构信息

Institute of Physiology and Pathophysiology, Johannes Gutenberg University, D-55099 Mainz, Germany.

出版信息

J Physiol. 2000 Nov 1;528(Pt 3):539-49. doi: 10.1111/j.1469-7793.2000.00539.x.

Abstract

Membrane currents evoked by repeated noxious heat stimuli (43-47 degrees C) of 3 s duration were investigated in acutely dissociated dorsal root ganglion (DRG) neurones of adult rats. The heat stimuli generated by a fast solution exchanger had a rise time of 114 +/- 6 ms and a fall time of 146 +/- 13 ms. When heat stimuli were applied to heat-sensitive small (< or = 32.5 microm) DRG neurones, an inward membrane current (I(heat)) with a mean peak of 2430 +/- 550 pA was observed (n = 19). This current started to activate and deactivate with no significant latency with respect to the heat stimulus. The peak of I(heat) was reached with a rise time of 625 +/- 115 ms. When the heat stimulus was switched off I(heat) deactivated with a fall time of 263 +/- 17 ms. During constant heat stimulation I(heat) decreased with time constants of 4-5 s (inactivation). At the end of a 3 s heat stimulus the peak current was reduced by 44 +/- 5 % (n = 19). Current-voltage curves revealed outward rectifying properties of I(heat) and a reversal potential of -6.3 +/- 2.2 mV (n = 6). Inactivation was observed at all membrane potentials investigated (-80 to 60 mV); however, inactivation was more pronounced for inward currents (37 +/- 5 %) than for outward currents (23 +/- 6 %, P < 0.05). When neurones were investigated with repeated heat stimuli (3 to 5 times) of the same temperature, the peak current relative to the first I(heat) declined by 48 +/- 6 % at the 3rd stimulus (n = 19) and by 54 +/- 18 % at the 5th stimulus (n = 4; tachyphylaxis). In the absence of extracellular Ca2+ (buffered with 10 mM EGTA) inactivation (by 53 +/- 6 %) and tachyphylaxis (by 42 +/- 7 % across three stimuli) were still observed (n = 8). The same was true when intracellular Ca2+ was buffered by 10 mM BAPTA (inactivation by 49 +/- 4 %, tachyphylaxis by 52 +/- 7 % across three stimuli; n = 13). Thus, inactivation and tachyphylaxis were mainly independent of intra- and extracellular Ca2+. These results indicate that inactivation and tachyphylaxis of heat-evoked inward currents can be observed in vitro, similar to adaptation and suppression of action potential discharges elicited by comparably fast heat stimuli in vivo. Whereas the voltage dependence of I(heat) resembles that of capsaicin-induced membrane currents (I(Caps)), the independence of inactivation and tachyphylaxis of I(heat) from calcium is in clear contrast to I(Caps). A similar difference in calcium dependence of inactivation has been reported between heat-evoked and capsaicin-induced currents through the cloned capsaicin receptor channel VR1. Thus, the properties of I(heat) and of VR1 largely account for the adaptation and suppression of heat-evoked nociceptor discharges.

摘要

在成年大鼠急性分离的背根神经节(DRG)神经元中,研究了持续3秒的重复有害热刺激(43 - 47摄氏度)诱发的膜电流。由快速溶液交换器产生的热刺激上升时间为114±6毫秒,下降时间为146±13毫秒。当热刺激施加于热敏性小(≤32.5微米)DRG神经元时,观察到平均峰值为2430±550皮安的内向膜电流(I(heat))(n = 19)。该电流相对于热刺激开始激活和失活,且无明显延迟。I(heat)的峰值在625±115毫秒的上升时间后达到。当热刺激关闭时,I(heat)以263±17毫秒的下降时间失活。在持续热刺激期间,I(heat)以4 - 5秒的时间常数下降(失活)。在3秒热刺激结束时,峰值电流降低了44±5%(n = 19)。电流 - 电压曲线显示I(heat)具有外向整流特性,反转电位为 - 6.3±2.2毫伏(n = 6)。在所有研究的膜电位( - 80至60毫伏)下均观察到失活;然而,内向电流的失活(37±5%)比外向电流(23±6%,P < 0.05)更明显。当用相同温度的重复热刺激(3至5次)研究神经元时,相对于第一次I(heat),第三次刺激时峰值电流下降了48±6%(n = 19),第五次刺激时下降了54±18%(n = 4;快速脱敏)。在无细胞外Ca2+(用10 mM EGTA缓冲)的情况下,仍观察到失活(53±6%)和快速脱敏(三次刺激中下降42±7%)(n = 8)。当用10 mM BAPTA缓冲细胞内Ca2+时也是如此(失活49±4%,三次刺激中快速脱敏52±7%;n = 13)。因此,失活和快速脱敏主要与细胞内和细胞外Ca2+无关。这些结果表明,在体外可以观察到热诱发内向电流的失活和快速脱敏,类似于体内由相当快速的热刺激引起的动作电位发放的适应和抑制。虽然I(heat)的电压依赖性类似于辣椒素诱导的膜电流(I(Caps)),但I(heat)的失活和快速脱敏对钙的独立性与I(Caps)形成鲜明对比。在通过克隆的辣椒素受体通道VR1的热诱发电流和辣椒素诱导电流之间,也报道了失活的钙依赖性存在类似差异。因此,I(heat)和VR1的特性在很大程度上解释了热诱发伤害感受器发放的适应和抑制。

相似文献

1
Inactivation and tachyphylaxis of heat-evoked inward currents in nociceptive primary sensory neurones of rats.
J Physiol. 2000 Nov 1;528(Pt 3):539-49. doi: 10.1111/j.1469-7793.2000.00539.x.
4
Temperature coefficient of membrane currents induced by noxious heat in sensory neurones in the rat.
J Physiol. 1999 May 15;517 ( Pt 1)(Pt 1):181-92. doi: 10.1111/j.1469-7793.1999.0181z.x.
6
Procaine excites nociceptors in cultures from dorsal root ganglion of the rat.
Neurosci Lett. 1999 Mar 19;263(1):49-52. doi: 10.1016/s0304-3940(99)00108-1.
9
The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons.
J Neurosci. 1997 May 15;17(10):3525-37. doi: 10.1523/JNEUROSCI.17-10-03525.1997.
10
Mechanisms of sensitization of the response of single dorsal root ganglion cells from adult rat to noxious heat.
Eur J Neurosci. 2003 Aug;18(3):535-41. doi: 10.1046/j.1460-9568.2003.02775.x.

引用本文的文献

3
Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2.
Biophys J. 2016 Apr 12;110(7):1523-1537. doi: 10.1016/j.bpj.2016.03.005.
5
Sleep spindles and human cortical nociception: a surface and intracerebral electrophysiological study.
J Physiol. 2015 Nov 15;593(22):4995-5008. doi: 10.1113/JP270941. Epub 2015 Oct 18.
6
Processing of nociceptive input from posterior to anterior insula in humans.
Hum Brain Mapp. 2014 Nov;35(11):5486-99. doi: 10.1002/hbm.22565. Epub 2014 Jun 11.
7
Cortical representation of pain in primary sensory-motor areas (S1/M1)--a study using intracortical recordings in humans.
Hum Brain Mapp. 2013 Oct;34(10):2655-68. doi: 10.1002/hbm.22097. Epub 2012 Jun 15.
8
Filtering the reality: functional dissociation of lateral and medial pain systems during sleep in humans.
Hum Brain Mapp. 2012 Nov;33(11):2638-49. doi: 10.1002/hbm.21390. Epub 2011 Sep 16.
9
TRPV1: on the road to pain relief.
Curr Mol Pharmacol. 2008 Nov;1(3):255-69. doi: 10.2174/1874467210801030255.
10
Parallel processing of nociceptive A-delta inputs in SII and midcingulate cortex in humans.
J Neurosci. 2008 Jan 23;28(4):944-52. doi: 10.1523/JNEUROSCI.2934-07.2008.

本文引用的文献

2
Adaptation of thermal pain in the skin.
J Appl Physiol. 1962 Jul;17:693-6. doi: 10.1152/jappl.1962.17.4.693.
3
Capacitative Calcium Entry.
News Physiol Sci. 1998 Aug;13:157-163. doi: 10.1152/physiologyonline.1998.13.4.157.
5
Similarities and differences between the responses of rat sensory neurons to noxious heat and capsaicin.
J Neurosci. 1999 Dec 15;19(24):10647-55. doi: 10.1523/JNEUROSCI.19-24-10647.1999.
7
Rises in [Ca2+]i mediate capsaicin- and proton-induced heat sensitization of rat primary nociceptive neurons.
Eur J Neurosci. 1999 Sep;11(9):3143-50. doi: 10.1046/j.1460-9568.1999.00734.x.
8
Sense and specificity: a molecular identity for nociceptors.
Curr Opin Neurobiol. 1999 Oct;9(5):525-30. doi: 10.1016/S0959-4388(99)00009-4.
10
Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat.
Neuron. 1999 Jul;23(3):617-24. doi: 10.1016/s0896-6273(00)80813-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验