Suppr超能文献

Smad4在细胞质和细胞核之间进行的不依赖于转化生长因子β的穿梭运输。

Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.

作者信息

Pierreux C E, Nicolás F J, Hill C S

机构信息

Laboratory of Developmental Signalling, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom.

出版信息

Mol Cell Biol. 2000 Dec;20(23):9041-54. doi: 10.1128/MCB.20.23.9041-9054.2000.

Abstract

Smad4 plays a pivotal role in all transforming growth factor beta (TGF-beta) signaling pathways. Here we describe six widely expressed alternatively spliced variants of human Smad4 with deletions of different exons in the linker, the region of Smad4 that separates the two well-conserved MH1 and MH2 domains. All these Smad4 variants form complexes with activated Smad2 and Smad3 and are incorporated into DNA-binding complexes with the transcription factor Fast-1, regardless of the amount of linker they contain. However, sequences encoded by exons 5 to 7 in the linker are essential for transcriptional activation. Most importantly, our observation that different Smad4 isoforms have different subcellular localizations has led us to the identification of a functional CRM1-dependent nuclear export signal in the Smad4 linker and a constitutively active nuclear localization signal in the N-terminal MH1 domain. In the absence of TGF-beta signaling, we conclude that Smad4 is rapidly and continuously shuttling between the nucleus and the cytoplasm, the distribution of Smad4 between the nucleus and the cytoplasm being dictated by the relative strengths of the nuclear import and export signals. We demonstrate that inhibition of CRM1-mediated nuclear export by treatment of cells with leptomycin B results in endogenous Smad4 accumulating very rapidly in the nucleus. Endogenous Smad2 and Smad3 are completely unaffected by leptomycin B treatment, indicating that the nucleocytoplasmic shuttling is specific for Smad4. We propose that, upon TGF-beta signaling, complex formation between Smad4 and activated Smad2 or -3 leads to nuclear accumulation of Smad4 through inhibition of its nuclear export. We demonstrate that after prolonged TGF-beta signaling Smad2 becomes dephosphorylated and Smad2 and Smad4 accumulate back in the cytoplasm.

摘要

Smad4在所有转化生长因子β(TGF-β)信号通路中发挥着关键作用。在此,我们描述了人类Smad4的六种广泛表达的可变剪接变体,它们在连接区缺失了不同的外显子,连接区是Smad4中分隔两个保守性良好的MH1和MH2结构域的区域。所有这些Smad4变体均与活化的Smad2和Smad3形成复合物,并与转录因子Fast-1一起被纳入DNA结合复合物中,无论它们所含连接区的长度如何。然而,连接区中外显子5至7编码的序列对于转录激活至关重要。最重要的是,我们观察到不同的Smad4异构体具有不同的亚细胞定位,这使我们在Smad4连接区鉴定出了一个功能性的依赖CRM1的核输出信号,并在N端MH1结构域鉴定出了一个组成型活性核定位信号。我们得出结论,在缺乏TGF-β信号时,Smad4在细胞核和细胞质之间快速且持续地穿梭,Smad4在细胞核和细胞质之间的分布由核输入和输出信号的相对强度决定。我们证明,用莱普霉素B处理细胞抑制CRM1介导的核输出会导致内源性Smad4在细胞核中非常迅速地积累。内源性Smad2和Smad3完全不受莱普霉素B处理的影响,表明核质穿梭对Smad4具有特异性。我们提出,在TGF-β信号作用下,Smad4与活化的Smad2或Smad3之间形成复合物会通过抑制其核输出导致Smad4在细胞核中积累。我们证明,在长时间的TGF-β信号作用后,Smad2去磷酸化,Smad2和Smad4重新积累回细胞质中。

相似文献

1
Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.
Mol Cell Biol. 2000 Dec;20(23):9041-54. doi: 10.1128/MCB.20.23.9041-9054.2000.
4
Nuclear targeting of transforming growth factor-beta-activated Smad complexes.
J Biol Chem. 2005 Jun 3;280(22):21329-36. doi: 10.1074/jbc.M500362200. Epub 2005 Mar 30.
5
Analysis of Smad nucleocytoplasmic shuttling in living cells.
J Cell Sci. 2004 Aug 15;117(Pt 18):4113-25. doi: 10.1242/jcs.01289. Epub 2004 Jul 27.
7
TGF-beta-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines.
Oncogene. 2003 Mar 6;22(9):1317-23. doi: 10.1038/sj.onc.1206128.

引用本文的文献

1
SMAD4 Limits PARP1 dependent DNA Repair to Render Pancreatic Cancer Cells Sensitive to Radiotherapy.
Cell Death Dis. 2024 Nov 11;15(11):818. doi: 10.1038/s41419-024-07210-7.
2
Bone morphogenetic protein signaling: the pathway and its regulation.
Genetics. 2024 Feb 7;226(2). doi: 10.1093/genetics/iyad200.
4
Melatonin and TGF-β-Mediated Release of Extracellular Vesicles.
Metabolites. 2023 Apr 18;13(4):575. doi: 10.3390/metabo13040575.
5
Antagonism between Prdm16 and Smad4 specifies the trajectory and progression of pancreatic cancer.
J Cell Biol. 2023 Apr 3;222(4). doi: 10.1083/jcb.202203036. Epub 2023 Feb 24.
8
Regulation of transforming growth factor-β signalling by SUMOylation and its role in fibrosis.
Open Biol. 2021 Nov;11(11):210043. doi: 10.1098/rsob.210043. Epub 2021 Nov 10.
10
Consequences of Mutations and Abnormal Expression of SMAD4 in Tumors and T Cells.
Onco Targets Ther. 2021 Apr 13;14:2531-2540. doi: 10.2147/OTT.S297855. eCollection 2021.

本文引用的文献

1
Importin beta mediates nuclear translocation of Smad 3.
J Biol Chem. 2000 Aug 4;275(31):23425-8. doi: 10.1074/jbc.C000345200.
2
Transcriptional control by the TGF-beta/Smad signaling system.
EMBO J. 2000 Apr 17;19(8):1745-54. doi: 10.1093/emboj/19.8.1745.
5
Microtubule binding to Smads may regulate TGF beta activity.
Mol Cell. 2000 Jan;5(1):27-34. doi: 10.1016/s1097-2765(00)80400-1.
6
Signaling inputs converge on nuclear effectors in TGF-beta signaling.
Trends Biochem Sci. 2000 Feb;25(2):64-70. doi: 10.1016/s0968-0004(99)01519-4.
8
The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain.
J Biol Chem. 2000 Jan 21;275(3):2115-22. doi: 10.1074/jbc.275.3.2115.
9
Transport between the cell nucleus and the cytoplasm.
Annu Rev Cell Dev Biol. 1999;15:607-60. doi: 10.1146/annurev.cellbio.15.1.607.
10
Regulation of nuclear localization: a key to a door.
Annu Rev Cell Dev Biol. 1999;15:291-339. doi: 10.1146/annurev.cellbio.15.1.291.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验