Suppr超能文献

蒺藜苜蓿中草酸钙晶体形成缺陷突变体的分离。

Isolation of Medicago truncatula mutants defective in calcium oxalate crystal formation.

作者信息

Nakata P A, McConn M M

机构信息

United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, Texas 77030-2600, USA.

出版信息

Plant Physiol. 2000 Nov;124(3):1097-104. doi: 10.1104/pp.124.3.1097.

Abstract

Plants accumulate crystals of calcium oxalate in a variety of shapes, sizes, amounts, and spatial locations. How and why many plants form crystals of calcium oxalate remain largely unknown. To gain insight into the regulatory mechanisms of crystal formation and function, we have initiated a mutant screen to identify the genetic determinants. Leaves from a chemically mutagenized Medicago truncatula population were visually screened for alterations in calcium oxalate crystal formation. Seven different classes of calcium oxalate defective mutants were identified that exhibited alterations in crystal nucleation, morphology, distribution and/or amount. Genetic analysis suggested that crystal formation is a complex process involving more than seven loci. Phenotypic analysis of a mutant that lacks crystals, cod 5, did not reveal any difference in plant growth and development compared with controls. This finding brings into question the hypothesized roles of calcium oxalate formation in supporting tissue structure and in regulating excess tissue calcium.

摘要

植物会积累各种形状、大小、数量和空间位置的草酸钙晶体。许多植物如何以及为何形成草酸钙晶体在很大程度上仍然未知。为了深入了解晶体形成和功能的调控机制,我们启动了一个突变体筛选来鉴定遗传决定因素。对经化学诱变的蒺藜苜蓿群体的叶片进行目视筛选,以检测草酸钙晶体形成的变化。鉴定出了七类不同的草酸钙缺陷突变体,它们在晶体成核、形态、分布和/或数量上表现出变化。遗传分析表明,晶体形成是一个涉及七个以上基因座的复杂过程。对一个无晶体的突变体cod 5进行的表型分析显示,与对照相比,其植物生长和发育没有任何差异。这一发现使人们对草酸钙形成在支持组织结构和调节过量组织钙方面的假设作用产生了质疑。

相似文献

1
Isolation of Medicago truncatula mutants defective in calcium oxalate crystal formation.
Plant Physiol. 2000 Nov;124(3):1097-104. doi: 10.1104/pp.124.3.1097.
2
Calcium oxalate crystal morphology mutants from Medicago truncatula.
Planta. 2002 Jul;215(3):380-6. doi: 10.1007/s00425-002-0759-8. Epub 2002 Apr 20.
3
Isolated Medicago truncatula mutants with increased calcium oxalate crystal accumulation have decreased ascorbic acid levels.
Plant Physiol Biochem. 2007 Mar-Apr;45(3-4):216-20. doi: 10.1016/j.plaphy.2007.01.013. Epub 2007 Feb 4.
4
Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula.
Plant Sci. 2012 Apr;185-186:246-9. doi: 10.1016/j.plantsci.2011.11.004. Epub 2011 Nov 9.
6
Engineering calcium oxalate crystal formation in Arabidopsis.
Plant Cell Physiol. 2012 Jul;53(7):1275-82. doi: 10.1093/pcp/pcs071. Epub 2012 May 10.
8
Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal-associated macromolecules.
Chemistry. 2001 May 4;7(9):1881-8. doi: 10.1002/1521-3765(20010504)7:9<1881::aid-chem1881>3.0.co;2-i.
9
Effect of Acyl Activating Enzyme (AAE) 3 on the growth and development of Medicago truncatula.
Biochem Biophys Res Commun. 2018 Oct 20;505(1):255-260. doi: 10.1016/j.bbrc.2018.09.104. Epub 2018 Sep 20.
10
Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in Acacia (Leguminosae: Mimosoideae)?
Plant Physiol Biochem. 2013 Dec;73:219-28. doi: 10.1016/j.plaphy.2013.10.006. Epub 2013 Oct 11.

引用本文的文献

2
Method for CaOx crystals isolation from plant leaves.
MethodsX. 2022 Jul 28;9:101798. doi: 10.1016/j.mex.2022.101798. eCollection 2022.
3
Tolerance strategies of two Mediterranean native xerophytes under fluoride pollution in Tunisia.
Environ Sci Pollut Res Int. 2018 Dec;25(34):34753-34764. doi: 10.1007/s11356-018-3431-y. Epub 2018 Oct 15.
4
An Oxalyl-CoA Synthetase Is Involved in Oxalate Degradation and Aluminum Tolerance.
Plant Physiol. 2016 Nov;172(3):1679-1690. doi: 10.1104/pp.16.01106. Epub 2016 Sep 20.
10
Plant calcium content: ready to remodel.
Nutrients. 2012 Aug;4(8):1120-36. doi: 10.3390/nu4081120. Epub 2012 Aug 21.

本文引用的文献

4
Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants.
Plant Physiol. 1978 Apr;61(4):590-2. doi: 10.1104/pp.61.4.590.
5
Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants.
Plant Physiol. 1975 Aug;56(2):283-5. doi: 10.1104/pp.56.2.283.
7
Production and characterization of diverse developmental mutants of Medicago truncatula.
Plant Physiol. 2000 Aug;123(4):1387-98. doi: 10.1104/pp.123.4.1387.
8
L-Ascorbic acid and L-galactose are sources for oxalic acid and calcium oxalate in Pistia stratiotes.
Phytochemistry. 2000 Feb;53(4):433-40. doi: 10.1016/s0031-9422(99)00448-3.
9
Brassinosteroid signal transduction: still casting the actors.
Curr Opin Plant Biol. 2000 Feb;3(1):79-84. doi: 10.1016/s1369-5266(99)00038-2.
10
Cell-mediated crystallization of calcium oxalate in plants.
Plant Cell. 1999 Apr;11(4):751-61. doi: 10.1105/tpc.11.4.751.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验