Waizenegger I C, Hauf S, Meinke A, Peters J M
Research Institute of Molecular Pathology, Vienna, Austria.
Cell. 2000 Oct 27;103(3):399-410. doi: 10.1016/s0092-8674(00)00132-x.
In yeast, anaphase depends on cohesin cleavage. How anaphase is controlled in vertebrates is unknown because their cohesins dissociate from chromosomes before anaphase. We show that residual amounts of the cohesin SCC1 remain associated with human centromeres until the onset of anaphase when a similarly small amount of SCC1 is cleaved. In Xenopus extracts, SCC1 cleavage depends on the anaphase-promoting complex and separin. Separin immunoprecipitates are sufficient to cleave SCC1, indicating that separin is associated with a protease activity. Separin activation coincides with securin destruction and partial separin cleavage, suggesting that several mechanisms regulate separin activity. We propose that in vertebrates, a cleavage-independent pathway removes cohesin from chromosome arms during prophase, whereas a separin-dependent pathway cleaves centromeric cohesin at the metaphase-anaphase transition.
在酵母中,后期依赖于黏连蛋白的切割。脊椎动物中后期如何被控制尚不清楚,因为它们的黏连蛋白在后期之前就从染色体上解离了。我们发现,黏连蛋白SCC1的残余量一直与人类着丝粒结合,直到后期开始时,同样少量的SCC1被切割。在非洲爪蟾提取物中,SCC1的切割依赖于后期促进复合物和分离酶。分离酶免疫沉淀足以切割SCC1,这表明分离酶与一种蛋白酶活性相关。分离酶的激活与securin的破坏和分离酶的部分切割同时发生,这表明有几种机制调节分离酶的活性。我们提出,在脊椎动物中,一条不依赖切割的途径在前期从染色体臂上移除黏连蛋白,而一条依赖分离酶的途径在中期-后期转换时切割着丝粒黏连蛋白。