Kanaya E, Watanabe K, Nakajima N, Okada K, Shimura Y
Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.
J Biol Chem. 2001 Mar 9;276(10):7383-90. doi: 10.1074/jbc.M009491200. Epub 2000 Nov 22.
The FILAMENTOUS FLOWER gene from Arabidopsis thaliana is a member of a gene family whose role is to specify abaxial cell fate in lateral organs. Analysis of the amino-terminal region of the FILAMENTOUS FLOWER protein suggests that seven cysteine residues at positions 14, 26, 30, 33, 54, 56, and 57, and two histidine residues at positions 18 and 24 contribute to a putative zinc finger motif, Cys-X(3)-His-X(5)-His-X-Cys-X(3)-Cys-X(2)-Cys-X(20)-Cys-X-Cys-Cys. Zinc determination experiments revealed that the FILAMENTOUS FLOWER protein binds two zinc ions per molecule. Chemical modification was required to release one zinc ion, whereas the other was released spontaneously or more rapidly in the presence of metallochromic indicator. The loss of a zinc ion and the subsequent structural change of the zinc finger domain were correlated with the multimerization of the FILAMENTOUS FLOWER protein. A cysteine residue at position 56 in the FILAMENTOUS FLOWER protein potentially interferes with zinc ligation within the zinc finger and causes this zinc release. In support of this, substitution of the Cys(56) by alanine suppressed both the zinc release and the multimerization of the FILAMENTOUS FLOWER protein. Deletion analysis showed that the region between positions 45 and 107 functions in the intermolecular contacts between FILAMENTOUS FLOWER proteins. This region corresponds to the carboxyl-terminal half of the zinc finger domain and the following hydrophobic region containing two putative alpha-helices. Our results suggest that the FILAMENTOUS FLOWER protein forms a range of different conformers. This attribute may lead to a greater degree of functional flexibility that is central to its role as an abaxial cell fate regulator.
拟南芥的丝状花基因是一个基因家族的成员,该家族的作用是确定侧生器官中背侧细胞的命运。对丝状花蛋白氨基末端区域的分析表明,第14、26、30、33、54、56和57位的七个半胱氨酸残基以及第18和24位的两个组氨酸残基构成了一个假定的锌指基序,即Cys-X(3)-His-X(5)-His-X-Cys-X(3)-Cys-X(2)-Cys-X(20)-Cys-X-Cys-Cys。锌测定实验表明,丝状花蛋白每个分子结合两个锌离子。需要化学修饰才能释放一个锌离子,而另一个锌离子在金属显色指示剂存在下会自发释放或更快释放。锌离子的丢失以及锌指结构域随后的结构变化与丝状花蛋白的多聚化相关。丝状花蛋白第56位的半胱氨酸残基可能会干扰锌指内的锌连接并导致这种锌释放。支持这一观点的是,将Cys(56)替换为丙氨酸可抑制丝状花蛋白的锌释放和多聚化。缺失分析表明,第45至107位之间的区域在丝状花蛋白之间的分子间接触中起作用。该区域对应于锌指结构域的羧基末端一半以及随后包含两个假定α螺旋的疏水区域。我们的结果表明丝状花蛋白形成了一系列不同的构象。这一特性可能导致更大程度的功能灵活性,这对于其作为背侧细胞命运调节因子的作用至关重要。