Slanina F, Kotrla M
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Praha 8, Czech Republic.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Nov;62(5 Pt A):6170-7. doi: 10.1103/physreve.62.6170.
We investigate a model of an evolving random network, introduced by us previously [Phys. Rev. Lett. 83, 5587 (1999)]. The model is a generalization of the Bak-Sneppen model of biological evolution, with the modification that the underlying network can evolve by adding and removing sites. The behavior and the averaged properties of the network depend on the parameter p, the probability to establish a link to the newly introduced site. For p=1 the system is self-organized critical, with two distinct power-law regimes with forward-avalanche exponents tau=1.98+/-0.04 and tau(')=1.65+/-0.05. The average size of the network diverges as a powerlaw when p-->1. We study various geometrical properties of the network: the probability distribution of sizes and connectivities, size and number of disconnected clusters, and the dependence of the mean distance between two sites on the cluster size. The connection with models of growing networks with a preferential attachment is discussed.
我们研究了一个演化随机网络模型,该模型由我们之前提出[《物理评论快报》83, 5587 (1999)]。此模型是生物进化的Bak-Sneppen模型的推广,不同之处在于基础网络可以通过添加和移除节点来演化。网络的行为和平均性质取决于参数p,即与新引入节点建立连接的概率。对于p = 1,系统是自组织临界的,具有两个不同的幂律区域,前向雪崩指数分别为tau = 1.98 ± 0.04和tau(') = 1.65 ± 0.05。当p → 1时,网络的平均规模以幂律形式发散。我们研究了网络的各种几何性质:规模和连通性的概率分布、不连通簇的规模和数量,以及两个节点之间的平均距离对簇规模的依赖性。还讨论了与具有优先连接的增长网络模型的联系。