Wells J E, Porter J T, Agmon A
Department of Anatomy, the Neuroscience Graduate Program, and the Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia 26506-9128, USA.
J Neurosci. 2000 Dec 1;20(23):8822-30. doi: 10.1523/JNEUROSCI.20-23-08822.2000.
In the adult cerebral cortex, the neurotransmitter GABA is strongly inhibitory, as it profoundly decreases neuronal excitability and suppresses the network propensity for synchronous activity. When fast, GABA(A) receptor (GABA(A)R)-mediated neurotransmission is blocked in the mature cortex, neuronal firing is synchronized via recurrent excitatory (glutamatergic) synaptic connections, generating population discharges manifested extracellularly as spontaneous paroxysmal field potentials (sPFPs). This epileptogenic effect of GABA(A)R antagonists has rarely been observed in the neonatal cortex, and indeed, GABA in the neonate has been proposed to have an excitatory, rather than inhibitory, action. In contrast, we show here that when fast GABAergic neurotransmission was blocked in slices of neonatal mouse and rat hippocampus and neocortex, sPFPs occurred in nearly half the slices from postnatal day 4 (P4) to P7 neocortex and in most slices from P2 to P7 hippocampus. In Mg(2+)-free solution, GABA(A)R antagonists elicited sPFPs in nearly all slices of P2 and older neocortex and P0 and older hippocampus. Mg(2+)-free solution alone induced spontaneous events in the majority of P2 and older slices from both regions; addition of GABA(A)R antagonists caused a dramatic increase in the mean amplitude, but not frequency, of these events in the hippocampus and in their mean frequency, but not amplitude, in the neocortex. In the hippocampus, GABA(A)R agonists suppressed amplitudes, but not frequency, of sPFPs, whereas glutamate antagonists suppressed frequency but not amplitudes. We conclude that neonatal rodent cerebral cortex possesses glutamatergic circuits capable of generating synchronous network activity and that, as in the adult, tonic GABA(A)R-mediated inhibition prevents this activity from becoming paroxysmal.
在成人大脑皮层中,神经递质γ-氨基丁酸(GABA)具有强烈的抑制作用,因为它能显著降低神经元兴奋性,并抑制网络同步活动的倾向。当成熟皮层中快速的GABA A受体(GABA A R)介导的神经传递被阻断时,神经元放电通过反复的兴奋性(谷氨酸能)突触连接实现同步,产生群体放电,在细胞外表现为自发阵发性场电位(sPFPs)。GABA A R拮抗剂的这种致痫作用在新生皮层中很少被观察到,实际上,有人提出新生儿体内的GABA具有兴奋而非抑制作用。相比之下,我们在此表明,当新生小鼠和大鼠海马体及新皮层切片中的快速GABA能神经传递被阻断时,出生后第4天(P4)至P7的新皮层近一半切片以及P2至P7的海马体大多数切片中出现了sPFPs。在无镁溶液中,GABA A R拮抗剂在几乎所有P2及以上年龄的新皮层切片和P0及以上年龄的海马体切片中引发了sPFPs。单独的无镁溶液在这两个区域大多数P2及以上年龄的切片中诱导出自发事件;添加GABA A R拮抗剂导致海马体中这些事件的平均幅度显著增加,但频率未变,而在新皮层中则导致其平均频率显著增加,但幅度未变。在海马体中,GABA A R激动剂抑制了sPFPs的幅度,但不影响频率,而谷氨酸拮抗剂抑制了频率,但不影响幅度。我们得出结论,新生啮齿动物大脑皮层拥有能够产生同步网络活动的谷氨酸能回路,并且与成年动物一样,持续性GABA A R介导的抑制作用可防止这种活动变成阵发性。