Suppr超能文献

设计基因:用于生物成像的重组抗体片段

Designer genes: recombinant antibody fragments for biological imaging.

作者信息

Wu A M, Yazaki P J

机构信息

Department of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.

出版信息

Q J Nucl Med. 2000 Sep;44(3):268-83.

Abstract

Monoclonal antibodies (MAbs), with high specificy and high affinity for their target antigens, can be utilized for delivery of agents such as radionuclides, enzymes, drugs, or toxins in vivo. However, the implementation of radiolabeled antibodies as "magic bullets" for detection and treatment of diseases such as cancer has required addressing several shortcomings of murine MAbs. These include their immunogenicity, sub-optimal targeting and pharmacokinetic properties, and practical issues of production and radiolabeling. Genetic engineering provides a powerful approach for redesigning antibodies for use in oncologic applications in vivo. Recombinant fragments have been produced that retain high affinity for target antigens, and display a combination of rapid, high-level tumor targeting with concomitant clearance from normal tissues and the circulation in animal models. An important first step was cloning and engineering of antibody heavy and light chain variable domains into single-chain Fvs (molecular weight, 25-27 kDa), in which the variable regions are joined via a synthetic linker peptide sequence. Although scFvs themselves showed limited tumor uptake in preclinical and clinical studies, they provide a useful building block for intermediate-sized recombinant fragments. Covalently linked dimers or non-covalent dimers of scFvs (also known as diabodies) show improved targeting and clearance properties due to their higher molecular weight (55 kDa) and increased avidity. Further gains can be made by generation of larger recombinant fragments, such as the minibody, an scFv-CH3 fusion protein that self-assembles into a bivalent dimer of 80 kDa. A systematic evaluation of scFv, diabody, minibody, and intact antibody (based on comparison of tumor uptakes, tumor:blood activity ratios, and calculation of an Imaging Figure of Merit) can form the basis for selection of combinations of recombinant fragments and radionuclides for imaging applications. Ease of engineering and expression, combined with novel specificities that will arise from advances in genomic and combinatorial approaches to target discovery, will usher in a new era of recombinant antibodies for biological imaging.

摘要

单克隆抗体(MAbs)对其靶抗原具有高度特异性和高亲和力,可用于在体内递送诸如放射性核素、酶、药物或毒素等制剂。然而,将放射性标记抗体用作检测和治疗癌症等疾病的“神奇子弹”,需要解决鼠源单克隆抗体的几个缺点。这些缺点包括它们的免疫原性、次优的靶向性和药代动力学特性,以及生产和放射性标记的实际问题。基因工程为重新设计用于体内肿瘤学应用的抗体提供了一种强大的方法。已经产生了重组片段,这些片段对靶抗原保持高亲和力,并在动物模型中表现出快速、高水平的肿瘤靶向性与从正常组织和循环中伴随清除相结合的特性。重要的第一步是将抗体重链和轻链可变结构域克隆并工程改造为单链Fv片段(分子量为25 - 27 kDa),其中可变区通过合成接头肽序列连接。尽管单链Fv片段本身在临床前和临床研究中显示出有限的肿瘤摄取,但它们为中等大小的重组片段提供了有用的构建模块。单链Fv片段的共价连接二聚体或非共价二聚体(也称为双抗体)由于其较高的分子量(55 kDa)和增加的亲和力而表现出改善的靶向性和清除特性。通过产生更大的重组片段,如微型抗体(一种单链Fv - CH3融合蛋白,可自组装成80 kDa的二价二聚体),可以进一步提高性能。对单链Fv片段、双抗体、微型抗体和完整抗体进行系统评估(基于肿瘤摄取、肿瘤:血液活性比的比较以及成像优值的计算),可为选择用于成像应用的重组片段和放射性核素组合奠定基础。易于工程改造和表达,再加上基因组和组合式靶标发现方法的进展将带来的新特异性,将开创用于生物成像的重组抗体的新时代。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验