Garza-García A, Ponzanelli-Velázquez G
Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F, 04510, México.
J Magn Reson. 2001 Jan;148(1):214-9. doi: 10.1006/jmre.2000.2235.
A new implementation of J doubling in the frequency domain is proposed. This modified J doubling uses novel sets of delta functions [..., +1, -1, +1, +1, -1, +1, ...] for in-phase multiplets and [..., -1, -1, -1, +1, +1, +1, ...] for antiphase multiplets. The convolution process together with the couplings found by it generates a deconvoluted multiplet that preserves the integral and the position of the original one. If the number of delta functions tends to infinity, the whole operation behaves like a formal deconvolution of the multiplet, which is a linear process. Modified J doubling allows for multistage procedures. This makes it possible to analyze 2D multiplets and to measure coupling constants as small as 0.11 Hz with an accuracy of +/-0.03 Hz.
提出了一种在频域中实现J加倍的新方法。这种改进的J加倍方法使用了新颖的δ函数集[..., +1, -1, +1, +1, -1, +1, ...]来处理同相多重峰,以及[..., -1, -1, -1, +1, +1, +1, ...]来处理反相多重峰。卷积过程及其所发现的耦合产生了一个去卷积后的多重峰,它保留了原始多重峰的积分和位置。如果δ函数的数量趋于无穷大,整个操作就类似于多重峰的形式去卷积,这是一个线性过程。改进的J加倍方法允许进行多阶段程序。这使得分析二维多重峰并测量低至0.11 Hz的耦合常数成为可能,其精度为+/-0.03 Hz。