Suppr超能文献

大肠杆菌RelA的调控需要C末端结构域的寡聚化。

Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain.

作者信息

Gropp M, Strausz Y, Gross M, Glaser G

机构信息

Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 90101, Israel.

出版信息

J Bacteriol. 2001 Jan;183(2):570-9. doi: 10.1128/JB.183.2.570-579.2001.

Abstract

The E. coli RelA protein is a ribosome-dependent (p)ppGpp synthetase that is activated in response to amino acid starvation. RelA can be dissected both functionally and physically into two domains: The N-terminal domain (NTD) (amino acids [aa] 1 to 455) contains the catalytic domain of RelA, and the C-terminal domain (CTD) (aa 455 to 744) is involved in regulating RelA activity. We used mutational analysis to localize sites important for RelA activity and control in these two domains. We inserted two separate mutations into the NTD, which resulted in mutated RelA proteins that were impaired in their ability to synthesize (p)ppGpp. When we caused the CTD in relA(+) cells to be overexpressed, (p)ppGpp accumulation during amino acid starvation was negatively affected. Mutational analysis showed that Cys-612, Asp-637, and Cys-638, found in a conserved amino acid sequence (aa 612 to 638), are essential for this negative effect of the CTD. When mutations corresponding to these residues were inserted into the full-length relA gene, the mutated RelA proteins were impaired in their regulation. In attempting to clarify the mechanism through which the CTD regulates RelA activity, we found no evidence for competition for ribosomal binding between the normal RelA and the overexpressed CTD. Results from CyaA complementation experiments of the bacterial two-hybrid system fusion plasmids (G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, Proc. Natl. Acad. Sci. USA 95:5752-5756, 1998) indicated that the CTD (aa 564 to 744) is involved in RelA-RelA interactions. Our findings support a model in which RelA activation is regulated by its oligomerization state.

摘要

大肠杆菌RelA蛋白是一种核糖体依赖性(p)ppGpp合成酶,在氨基酸饥饿时被激活。RelA在功能和物理上可分为两个结构域:N端结构域(NTD)(氨基酸[aa]1至455)包含RelA的催化结构域,C端结构域(CTD)(aa 455至744)参与调节RelA活性。我们使用突变分析来定位这两个结构域中对RelA活性和调控重要的位点。我们在NTD中插入了两个单独的突变,这导致突变的RelA蛋白合成(p)ppGpp的能力受损。当我们使relA(+)细胞中的CTD过表达时,氨基酸饥饿期间(p)ppGpp的积累受到负面影响。突变分析表明,在保守氨基酸序列(aa 612至638)中发现的半胱氨酸-612、天冬氨酸-637和半胱氨酸-638对于CTD的这种负面影响至关重要。当将与这些残基对应的突变插入全长relA基因时,突变的RelA蛋白在其调控方面受损。在试图阐明CTD调节RelA活性的机制时,我们没有发现正常RelA与过表达的CTD之间竞争核糖体结合的证据。细菌双杂交系统融合质粒的CyaA互补实验结果(G.卡里莫娃、J.皮杜、A.乌尔曼和D.拉丹特,《美国国家科学院院刊》95:5752 - 5756,1998)表明CTD(aa 564至744)参与RelA - RelA相互作用。我们的发现支持一种模型,即RelA的激活受其寡聚化状态调控。

相似文献

1
Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain.
J Bacteriol. 2001 Jan;183(2):570-9. doi: 10.1128/JB.183.2.570-579.2001.
4
Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene.
Mol Microbiol. 2009 Apr;72(2):380-98. doi: 10.1111/j.1365-2958.2009.06653.x. Epub 2009 Mar 4.
5
Involvement of the N terminus of ribosomal protein L11 in regulation of the RelA protein of Escherichia coli.
J Bacteriol. 2001 Nov;183(22):6532-7. doi: 10.1128/JB.183.22.6532-6537.2001.
6
Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis.
Mol Microbiol. 2008 Jan;67(2):291-304. doi: 10.1111/j.1365-2958.2007.06018.x. Epub 2007 Dec 7.
7
Molecular characterization of vibrio cholerae DeltarelA DeltaspoT double mutants.
Arch Microbiol. 2008 Mar;189(3):227-38. doi: 10.1007/s00203-007-0312-z. Epub 2007 Oct 30.
9
Fusion of the N-terminal 119 amino acids of RelA with the CTD domain render growth inhibitory effects of the latter, (p)ppGpp-dependent.
Mol Genet Genomics. 2022 Mar;297(2):601-620. doi: 10.1007/s00438-022-01873-7. Epub 2022 Mar 3.
10
Dependence of RelA-mediated (p)ppGpp formation on tRNA identity.
Biochemistry. 2011 Apr 19;50(15):3075-83. doi: 10.1021/bi1015309. Epub 2011 Mar 25.

引用本文的文献

1
SPI-1 virulence gene expression modulates motility of Salmonella Typhimurium in a proton motive force- and adhesins-dependent manner.
PLoS Pathog. 2023 Jun 14;19(6):e1011451. doi: 10.1371/journal.ppat.1011451. eCollection 2023 Jun.
2
Starvation sensing by mycobacterial RelA/SpoT homologue through constitutive surveillance of translation.
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2302006120. doi: 10.1073/pnas.2302006120. Epub 2023 May 22.
3
4
Structure of SpoT reveals evolutionary tuning of catalysis via conformational constraint.
Nat Chem Biol. 2023 Mar;19(3):334-345. doi: 10.1038/s41589-022-01198-x. Epub 2022 Dec 5.
5
Mutations in and Genes Mediate Response to Fermentation Stress in Thermally Adapted Strains of Acetic Acid Bacterium NBRC 3288.
Front Microbiol. 2022 May 12;13:802010. doi: 10.3389/fmicb.2022.802010. eCollection 2022.
7
Fusion of the N-terminal 119 amino acids of RelA with the CTD domain render growth inhibitory effects of the latter, (p)ppGpp-dependent.
Mol Genet Genomics. 2022 Mar;297(2):601-620. doi: 10.1007/s00438-022-01873-7. Epub 2022 Mar 3.
9
NirD curtails the stringent response by inhibiting RelA activity in .
Elife. 2021 Jul 29;10:e64092. doi: 10.7554/eLife.64092.
10
Emerging and divergent roles of pyrophosphorylated nucleotides in bacterial physiology and pathogenesis.
PLoS Pathog. 2021 May 13;17(5):e1009532. doi: 10.1371/journal.ppat.1009532. eCollection 2021 May.

本文引用的文献

1
The chromosomal site of the RNA control (RC) locus in Escherichia coli.
J Mol Biol. 1962 Sep;5:348-55. doi: 10.1016/s0022-2836(62)80077-1.
2
A genetic locus for the regulation of ribonucleic acid synthesis.
Proc Natl Acad Sci U S A. 1961 Dec 15;47(12):2005-14. doi: 10.1073/pnas.47.12.2005.
3
Erythropoietin receptor activation by a ligand-induced conformation change.
Science. 1999 Feb 12;283(5404):990-3. doi: 10.1126/science.283.5404.990.
4
Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation.
Science. 1999 Feb 12;283(5404):987-90. doi: 10.1126/science.283.5404.987.
6
A bacterial two-hybrid system based on a reconstituted signal transduction pathway.
Proc Natl Acad Sci U S A. 1998 May 12;95(10):5752-6. doi: 10.1073/pnas.95.10.5752.
7
Activation of the OxyR transcription factor by reversible disulfide bond formation.
Science. 1998 Mar 13;279(5357):1718-21. doi: 10.1126/science.279.5357.1718.
8
Cloning and characterization of a relA/spoT homologue from Bacillus subtilis.
Mol Microbiol. 1997 Oct;26(1):65-79. doi: 10.1046/j.1365-2958.1997.5511919.x.
9
A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthetic genes.
J Biol Chem. 1996 May 3;271(18):10627-34. doi: 10.1074/jbc.271.18.10627.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验