Piel J, Hertweck C, Shipley P R, Hunt D M, Newman M S, Moore B S
Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA.
Chem Biol. 2000 Dec;7(12):943-55. doi: 10.1016/s1074-5521(00)00044-2.
Polycyclic aromatic polyketides, such as the tetracyclines and anthracyclines, are synthesized by bacterial aromatic polyketide synthases (PKSs). Such PKSs contain a single set of iteratively used individual proteins for the construction of a highly labile poly-beta-carbonyl intermediate that is cyclized by associated enzymes to the core aromatic polyketide. A unique polyketide biosynthetic pathway recently identified in the marine strain 'Streptomyces maritimus' deviates from the normal aromatic PKS model in the generation of a diverse series of chiral, non-aromatic polyketides.
A 21.3 kb gene cluster encoding the biosynthesis of the enterocin and wailupemycin family of polyketides from 'S. maritimus' has been cloned and sequenced. The biosynthesis of these structurally diverse polyketides is encoded on a 20 open reading frames gene set containing a centrally located aromatic PKS. The architecture of this novel type II gene set differs from all other aromatic PKS clusters by the absence of cyclase and aromatase encoding genes and the presence of genes encoding the biosynthesis and attachment of the unique benzoyl-CoA starter unit. In addition to the previously reported heterologous expression of the gene set, in vitro and in vivo expression studies with the cytochrome P-450 EncR and the ketoreductase EncD, respectively, support the involvement of the cloned genes in enterocin biosynthesis.
The enterocin biosynthesis gene cluster represents the most versatile type II PKS system investigated to date. A large series of divergent metabolites are naturally generated from the single biochemical pathway, which has several metabolic options for creating structural diversity. The absence of cyclase and aromatase gene products and the involvement of an oxygenase-catalyzed Favorskii-like rearrangement provide insight into the observed spontaneity of this pathway. This system provides the foundation for engineering hybrid expression sets in the generation of structurally novel compounds for use in drug discovery.
多环芳香聚酮化合物,如四环素类和蒽环类抗生素,是由细菌芳香聚酮合酶(PKSs)合成的。这类聚酮合酶包含一组经反复使用的单个蛋白质,用于构建一种高度不稳定的聚-β-羰基中间体,该中间体由相关酶环化形成核心芳香聚酮。最近在海洋菌株“海链霉菌”中发现的一条独特的聚酮生物合成途径,在生成一系列多样的手性、非芳香聚酮时,偏离了正常的芳香聚酮合酶模型。
已克隆并测序了一个21.3 kb的基因簇,该基因簇编码来自“海链霉菌”的肠菌素和瓦鲁培霉素家族聚酮化合物的生物合成。这些结构多样的聚酮化合物的生物合成由一个包含位于中心位置的芳香聚酮合酶的20个开放阅读框基因集编码。这种新型II型基因集的结构与所有其他芳香聚酮合酶簇不同,其缺少环化酶和芳香化酶编码基因,且存在编码独特苯甲酰辅酶A起始单元生物合成和连接的基因。除了之前报道的该基因集的异源表达外,分别对细胞色素P-450 EncR和酮还原酶EncD进行的体外和体内表达研究,支持了克隆基因参与肠菌素生物合成。
肠菌素生物合成基因簇代表了迄今为止研究的最多功能的II型聚酮合酶系统。单一生化途径可自然产生大量不同的代谢产物,该途径有多种产生结构多样性的代谢选择。环化酶和芳香化酶基因产物的缺失以及加氧酶催化的类Favorskii重排的参与,为该途径中观察到的自发性提供了线索。该系统为构建用于药物发现的结构新颖化合物的杂交表达集奠定了基础。