Dupureur C M, Dominguez M A
Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA.
Biochemistry. 2001 Jan 16;40(2):387-94. doi: 10.1021/bi001680l.
The active sites of Mg(II)-dependent nucleases feature a cluster of conserved charged residues which includes both acidic (Asp and Glu) and basic (Lys) side chains. In restriction enzymes, these side chains are part of the conserved PD...(D/E)XK functional sequence motif which has been implicated as being important in metal ion binding and catalytic steps. Recent work revealing the unusual behavior of the active site variant D58A of the representative PvuII endonuclease prompted speculation that the array of charged groups in the nuclease active site may also be linked to conformational behavior [Dupureur, C. M., and Conlan, L. H. (2000) Biochemistry 39, 10921-10927]. To address this issue, we analyzed the conformational behavior of active site variants of PvuII endonuclease using both NMR spectroscopic and thermodynamic methods. NMR spectroscopic analysis via (19)F and (1)H-(15)N HSQC experiments indicates that a number of side chain and backbone amide groups are perturbed upon Ala substitution at conserved active site residues Asp58, Glu68, and Lys70. Spectral changes are particularly pronounced for the lowest-activity mutants (D58A and K70A). These changes are accompanied by perturbations in conformational stability. Ala substitution at each of these positions results in 2-5 kcal/mol of stabilization over the wild-type enzyme at pH 7.7, changes which constitute increases in DeltaG(d)(H2O) of 20-50%. The pH dependencies of mutant enzyme stabilities are distinct from those of the wild type, results which confirm that these ionizable groups strongly influence stability. Wild-type enzyme stability is correlated with the ionization of groups shown to be important to metal ion binding and orientation. Correlations between spectral changes and conformational stability indicate that the latter measurements may prove useful in the evaluation of site-directed mutant restriction enzymes. More importantly, these results indicate that structure-function relationships in restriction enzyme active sites can be complex, and that the ensemble of conserved charged residues which mediate DNA hydrolysis in Mg(II)-dependent nucleases constitutes a critical link between function and conformation.
依赖镁离子的核酸酶的活性位点具有一簇保守的带电荷残基,其中包括酸性(天冬氨酸和谷氨酸)和碱性(赖氨酸)侧链。在限制酶中,这些侧链是保守的PD...(D/E)XK功能序列基序的一部分,该基序被认为在金属离子结合和催化步骤中很重要。最近的研究揭示了代表性的PvuII核酸内切酶活性位点变体D58A的异常行为,这引发了人们的猜测,即核酸酶活性位点中的一系列带电荷基团可能也与构象行为有关[杜普雷尔,C.M.,和康兰,L.H.(2000年)《生物化学》39,10921 - 10927]。为了解决这个问题,我们使用核磁共振光谱法和热力学方法分析了PvuII核酸内切酶活性位点变体的构象行为。通过(19)F和(1)H - (15)N HSQC实验进行的核磁共振光谱分析表明,在保守的活性位点残基天冬氨酸58、谷氨酸68和赖氨酸70处用丙氨酸取代后,许多侧链和主链酰胺基团受到了扰动。对于活性最低的突变体(D58A和K70A),光谱变化尤为明显。这些变化伴随着构象稳定性的扰动。在这些位置中的每一个位置用丙氨酸取代,在pH 7.7时比野生型酶稳定2 - 5千卡/摩尔,这些变化构成了ΔG(d)(H2O)增加20 - 50%。突变体酶稳定性的pH依赖性与野生型不同,这些结果证实这些可电离基团强烈影响稳定性。野生型酶的稳定性与对金属离子结合和取向很重要的基团的电离相关。光谱变化与构象稳定性之间的相关性表明,后一种测量方法可能在评估定点突变限制酶方面证明是有用的。更重要的是,这些结果表明限制酶活性位点中的结构 - 功能关系可能很复杂,并且在依赖镁离子的核酸酶中介导DNA水解的保守带电荷残基的集合构成了功能与构象之间的关键联系。