Toyota E, Ng K K, Sekizaki H, Itoh K, Tanizawa K, James M N
Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobestu, Hokkaido 061-0293, Japan.
J Mol Biol. 2001 Jan 19;305(3):471-9. doi: 10.1006/jmbi.2000.4303.
To establish the structural basis underlying the activity of a novel series of metal-chelate trypsin inhibitors, the structures of p-amidinosalicylidene-l-alaninato(aqua)copper(II) (1a), m-amidinosalicylidene-l-alaninato(aqua)copper(II) (1b), bis(p-amidinosalicylidene-l-alaninato)iron(III) (2a), and bis(m-amidinosalicylidene-l-alaninato)iron(III) (2b) bound to bovine beta-trypsin were studied by X-ray crystallography. The amidinium group of the inhibitor donates hydrogen bonds to Asp189, Gly219 and Ser190, as seen before in trypsin-benzamidine complexes. The copper(II) ion of 1a is situated away from trypsin's catalytic triad residues, and is octahedrally coordinated by a Schiff base and three water molecules. In contrast, the copper(II) ion of 1b is situated close to the catalytic triad and adopts a square pyramidal coordination geometry. The iron(III) ion of 2a is octahedrally coordinated by two Schiff base ligands and, like the copper(II) ion of 1a, is situated away from the catalytic triad. The p-amidinophenyl ring of a second Schiff base ligand of 2a is directed toward a hydrophobic groove formed by Trp215 and Leu99. Finally, the iron(III) ion of 2b appears to be replaced by magnesium(II), which is octahedrally coordinated by a Schiff base, Gln192 and two water molecules. One of the Schiff base ligands seen in the trypsin-2a complex or in the unbound form of 2b is replaced by water molecules and Gln192. His57 and Ser195 form water-mediated interactions with the magnesium(II) ion of 2b, and Ser195 also forms a hydrogen bond with the phenolic oxygen atom of the Schiff base ligand. These structures reveal a novel mode of interaction between metal-chelate inhibitors and serine proteases, thus providing a structural basis for the development of more potent inhibitors against a variety of trypsin-like enzymes.
为了确定一系列新型金属螯合胰蛋白酶抑制剂活性背后的结构基础,通过X射线晶体学研究了与牛β-胰蛋白酶结合的对氨基水杨叉- L -丙氨酸根(水)铜(II)(1a)、间氨基水杨叉- L -丙氨酸根(水)铜(II)(1b)、双(对氨基水杨叉- L -丙氨酸根)铁(III)(2a)和双(间氨基水杨叉- L -丙氨酸根)铁(III)(2b)的结构。抑制剂的脒基向Asp189、Gly219和Ser190提供氢键,这在胰蛋白酶-苯甲脒复合物中已见过。1a的铜(II)离子远离胰蛋白酶的催化三联体残基,由一个席夫碱和三个水分子八面体配位。相比之下,1b的铜(II)离子位于催化三联体附近,采用四方锥配位几何结构。2a的铁(III)离子由两个席夫碱配体八面体配位,并且与1a的铜(II)离子一样,位于远离催化三联体的位置。2a的第二个席夫碱配体的对氨基苯环指向由Trp215和Leu99形成的疏水凹槽。最后,2b的铁(III)离子似乎被镁(II)取代,镁(II)由一个席夫碱、Gln192和两个水分子八面体配位。在胰蛋白酶-2a复合物或2b的未结合形式中看到的一个席夫碱配体被水分子和Gln192取代。His57和Ser195与2b的镁(II)离子形成水介导的相互作用,并且Ser195还与席夫碱配体的酚氧原子形成氢键。这些结构揭示了金属螯合抑制剂与丝氨酸蛋白酶之间的一种新型相互作用模式,从而为开发针对多种胰蛋白酶样酶的更有效抑制剂提供了结构基础。