Fretland A J, Omiecinski C J
Department of Environmental Health,of Washington, 4225 Roosevelt Way NE, #100 Seattle, WA 98105-6099, USA.
Chem Biol Interact. 2000 Dec 1;129(1-2):41-59. doi: 10.1016/s0009-2797(00)00197-6.
Epoxides are organic three-membered oxygen compounds that arise from oxidative metabolism of endogenous, as well as xenobiotic compounds via chemical and enzymatic oxidation processes, including the cytochrome P450 monooxygenase system. The resultant epoxides are typically unstable in aqueous environments and chemically reactive. In the case of xenobiotics and certain endogenous substances, epoxide intermediates have been implicated as ultimate mutagenic and carcinogenic initiators Adams et al. (Chem. Biol. Interact. 95 (1995) 57-77) Guengrich (Properties and Metabolic roles 4 (1982) 5-30) Sayer et al. (J. Biol. Chem. 260 (1985) 1630-1640). Therefore, it is of vital importance for the biological organism to regulate levels of these reactive species. The epoxide hydrolases (E.C. 3.3.2. 3) belong to a sub-category of a broad group of hydrolytic enzymes that include esterases, proteases, dehalogenases, and lipases Beetham et al. (DNA Cell Biol. 14 (1995) 61-71). In particular, the epoxide hydrolases are a class of proteins that catalyze the hydration of chemically reactive epoxides to their corresponding dihydrodiol products. Simple epoxides are hydrated to their corresponding vicinal dihydrodiols, and arene oxides to trans-dihydrodiols. In general, this hydration leads to more stable and less reactive intermediates, however exceptions do exist. In mammalian species, there are at least five epoxide hydrolase forms, microsomal cholesterol 5,6-oxide hydrolase, hepoxilin A(3) hydrolase, leukotriene A(4) hydrolase, soluble, and microsomal epoxide hydrolase. Each of these enzymes is distinct chemically and immunologically. Table 1 illustrates some general properties for each of these classes of hydrolases. Fig. 1 provides an overview of selected model substrates for each class of epoxide hydrolase.
环氧化物是有机三元含氧化合物,通过化学和酶促氧化过程(包括细胞色素P450单加氧酶系统),由内源性以及外源性化合物的氧化代谢产生。生成的环氧化物通常在水性环境中不稳定且具有化学反应性。就外源性物质和某些内源性物质而言,环氧化物中间体被认为是最终的诱变和致癌引发剂(亚当斯等人,《化学生物相互作用》95(1995年)57 - 77;根里奇,《性质和代谢作用》4(1982年)5 - 30;塞耶等人,《生物化学杂志》260(1985年)1630 - 1640)。因此,生物有机体调节这些反应性物种的水平至关重要。环氧化物水解酶(E.C. 3.3.2. 3)属于一大类水解酶的一个亚类,这一大类水解酶包括酯酶、蛋白酶、脱卤酶和脂肪酶(比瑟姆等人,《DNA和细胞生物学》14(1995年)61 - 71)。特别是,环氧化物水解酶是一类蛋白质,可催化化学反应性环氧化物水合形成相应的二氢二醇产物。简单环氧化物水合形成相应的邻位二氢二醇,芳烃氧化物水合形成反式二氢二醇。一般来说,这种水合作用会产生更稳定、反应性更低的中间体,但也存在例外情况。在哺乳动物物种中,至少有五种环氧化物水解酶形式,微粒体胆固醇5,6 - 氧化物水解酶、肝氧素A(3)水解酶、白三烯A(4)水解酶、可溶性环氧化物水解酶和微粒体环氧化物水解酶。这些酶中的每一种在化学和免疫学上都是不同的。表1说明了这些水解酶类别的一些一般特性。图1概述了每类环氧化物水解酶的选定模型底物。