Suppr超能文献

细胞外阳离子对ROMK的调节作用。

Regulation of ROMK by extracellular cations.

作者信息

Sackin H, Syn S, Palmer L G, Choe H, Walters D E

机构信息

Department of Physiology and Biophysics, The Chicago Medical School, North Chicago, Illinois 60064, USA.

出版信息

Biophys J. 2001 Feb;80(2):683-97. doi: 10.1016/S0006-3495(01)76048-1.

Abstract

The effect of external potassium (K) and cesium (Cs) on the inwardly rectifying K channel ROMK2 (K(ir)1.1b) was studied in Xenopus oocytes. Elevating external K from 1 to 10 mM increased whole-cell outward conductance by a factor of 3.4 +/- 0.4 in 15 min and by a factor of 5.7 +/- 0.9 in 30 min (n = 22). Replacing external Na by Cs blocked inward conductance but increased whole-cell conductance by a factor of 4.5 +/- 0.5 over a period of 40 min (n = 15). In addition to this slow increase in conductance, there was also a small, rapid increase in conductance that occurred as soon as ROMK was exposed to external cesium or 10 mM K. This rapid increase could be explained by the observed increase in ROMK single-channel conductance from 6.4 +/- 0.8 pS to 11.1 +/- 0.8 pS (10 mM K, n = 8) or 11.7 +/- 1.2 pS (Cs, n = 8). There was no effect of either 10 mM K or cesium on the high open probability (P(o) = 0.97 +/- 0.01; n = 12) of ROMK outward currents. In patch-clamp recordings, the number of active channels increased when the K concentration at the outside surface was raised from 1 to 50 mM K. In cell-attached patches, exposure to 50 mM external K produced one or more additional channels in 9/16 patches. No change in channel number was observed in patches continuously exposed to 50 mM external K. Hence, the slow increase in whole-cell conductance is interpreted as activation of pre-existing ROMK channels that had been inactivated by low external K. This type of time-dependent channel activation was not seen with IRK1 (K(ir)2.1) or in ROMK2 mutants in which any one of 6 residues, F129, Q133, E132, V121, L117, or K61, were replaced by their respective IRK1 homologs. These results are consistent with a model in which ROMK can exist in either an activated mode or an inactivated mode. Within the activated mode, individual channels undergo rapid transitions between open and closed states. High (10 mM) external K or Cs stabilizes the activated mode, and low external K stabilizes the inactivated mode. Mutation of a pH-sensing site (ROMK2-K61) prevents transitions from activated to inactivated modes. This is consistent with a direct effect of external K or Cs on the gating of ROMK by internal pH.

摘要

在非洲爪蟾卵母细胞中研究了细胞外钾离子(K)和铯离子(Cs)对内向整流钾通道ROMK2(K(ir)1.1b)的影响。将细胞外K浓度从1 mM提高到10 mM,在15分钟内使全细胞外向电导增加3.4±0.4倍,在30分钟内增加5.7±0.9倍(n = 22)。用Cs取代细胞外Na可阻断内向电导,但在40分钟内使全细胞电导增加4.5±0.5倍(n = 15)。除了这种电导的缓慢增加外,当ROMK暴露于细胞外铯或10 mM K时,还会立即出现一个小的、快速的电导增加。这种快速增加可以用观察到的ROMK单通道电导从6.4±0.8 pS增加到11.1±0.8 pS(10 mM K,n = 8)或11.7±1.2 pS(Cs,n = 8)来解释。10 mM K或铯对ROMK外向电流的高开放概率(P(o)=0.97±0.01;n = 12)没有影响。在膜片钳记录中,当细胞外表面的K浓度从1 mM提高到50 mM时,活性通道的数量增加。在细胞贴附式膜片中,暴露于50 mM细胞外K在9/16个膜片中产生了一个或多个额外的通道。在持续暴露于50 mM细胞外K的膜片中未观察到通道数量的变化。因此,全细胞电导的缓慢增加被解释为预先存在的、因细胞外低钾而失活的ROMK通道的激活。IRK1(K(ir)2.1)或ROMK2突变体(其中6个残基F129、Q133、E132、V121、L117或K61中的任何一个被其各自的IRK1同源物取代)未出现这种时间依赖性的通道激活。这些结果与一个模型一致,即ROMK可以以激活模式或失活模式存在。在激活模式下,单个通道在开放和关闭状态之间快速转换。高(10 mM)细胞外K或Cs稳定激活模式,而低细胞外K稳定失活模式。pH敏感位点(ROMK2-K61)的突变阻止了从激活模式到失活模式的转换。这与细胞外K或Cs通过内部pH对ROMK门控的直接作用一致。

相似文献

1
Regulation of ROMK by extracellular cations.
Biophys J. 2001 Feb;80(2):683-97. doi: 10.1016/S0006-3495(01)76048-1.
2
Structural determinants of gating in inward-rectifier K+ channels.
Biophys J. 1999 Apr;76(4):1988-2003. doi: 10.1016/S0006-3495(99)77357-1.
3
Permeant cations and blockers modulate pH gating of ROMK channels.
Biophys J. 2003 Feb;84(2 Pt 1):910-21. doi: 10.1016/S0006-3495(03)74908-X.
4
A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating.
Am J Physiol. 1997 Oct;273(4):F516-29. doi: 10.1152/ajprenal.1997.273.4.F516.
5
Permeation properties of inward-rectifier potassium channels and their molecular determinants.
J Gen Physiol. 2000 Apr;115(4):391-404. doi: 10.1085/jgp.115.4.391.
6
PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values.
Am J Physiol Renal Physiol. 2000 Nov;279(5):F919-26. doi: 10.1152/ajprenal.2000.279.5.F919.
7
Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling.
J Gen Physiol. 2004 Apr;123(4):441-54. doi: 10.1085/jgp.200308989.
8
Unitary conductance variation in Kir2.1 and in cardiac inward rectifier potassium channels.
Biophys J. 2001 Oct;81(4):2035-49. doi: 10.1016/S0006-3495(01)75853-5.
10
Carboxy-terminal determinants of conductance in inward-rectifier K channels.
J Gen Physiol. 2004 Dec;124(6):729-39. doi: 10.1085/jgp.200409166.

引用本文的文献

1
Cesium-associated hypokalemia successfully treated with amiloride.
Clin Kidney J. 2015 Jun;8(3):335-8. doi: 10.1093/ckj/sfv017. Epub 2015 Mar 31.
2
Lack of negatively charged residues at the external mouth of Kir2.2 channels enable the voltage-dependent block by external Mg2+.
PLoS One. 2014 Oct 28;9(10):e111372. doi: 10.1371/journal.pone.0111372. eCollection 2014.
3
Inhibition of ROMK channels by low extracellular K+ and oxidative stress.
Am J Physiol Renal Physiol. 2013 Jul 15;305(2):F208-15. doi: 10.1152/ajprenal.00185.2013. Epub 2013 May 15.
4
Residues at the outer mouth of Kir1.1 determine K-dependent gating.
Biophys J. 2012 Jun 20;102(12):2742-50. doi: 10.1016/j.bpj.2012.05.018. Epub 2012 Jun 19.
5
Potassium-dependent activation of Kir4.2 K⁺ channels.
J Physiol. 2011 Dec 15;589(Pt 24):5949-63. doi: 10.1113/jphysiol.2011.220731. Epub 2011 Oct 24.
6
Structural correlates of selectivity and inactivation in potassium channels.
Biochim Biophys Acta. 2012 Feb;1818(2):272-85. doi: 10.1016/j.bbamem.2011.09.007. Epub 2011 Sep 16.
7
Kir4.1 K+ channels are regulated by external cations.
Channels (Austin). 2011 May-Jun;5(3):269-79. doi: 10.4161/chan.5.3.15827. Epub 2011 May 1.
8
Modulation of Kir1.1 inactivation by extracellular Ca and Mg.
Biophys J. 2011 Mar 2;100(5):1207-15. doi: 10.1016/j.bpj.2011.01.032.
9
Regulation and function of potassium channels in aldosterone-sensitive distal nephron.
Curr Opin Nephrol Hypertens. 2010 Sep;19(5):463-70. doi: 10.1097/MNH.0b013e32833c34ec.
10
A conserved arginine near the filter of Kir1.1 controls Rb/K selectivity.
Channels (Austin). 2010 May-Jun;4(3):203-14. doi: 10.4161/chan.4.3.11982.

本文引用的文献

1
PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values.
Am J Physiol Renal Physiol. 2000 Nov;279(5):F919-26. doi: 10.1152/ajprenal.2000.279.5.F919.
3
Permeation properties of inward-rectifier potassium channels and their molecular determinants.
J Gen Physiol. 2000 Apr;115(4):391-404. doi: 10.1085/jgp.115.4.391.
4
pH gating of ROMK (K(ir)1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome.
Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15298-303. doi: 10.1073/pnas.96.26.15298.
5
Structural determinants of gating in inward-rectifier K+ channels.
Biophys J. 1999 Apr;76(4):1988-2003. doi: 10.1016/S0006-3495(99)77357-1.
6
Mutations in the pore regions of the yeast K+ channel YKC1 affect gating by extracellular K+.
EMBO J. 1998 Dec 15;17(24):7190-8. doi: 10.1093/emboj/17.24.7190.
7
pH-dependent modulation of the cloned renal K+ channel, ROMK.
Am J Physiol. 1998 Dec;275(6):F972-81. doi: 10.1152/ajprenal.1998.275.6.F972.
8
The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties.
J Neurosci. 1998 Nov 1;18(21):8625-36. doi: 10.1523/JNEUROSCI.18-21-08625.1998.
9
Partially active channels produced by PKA site mutation of the cloned renal K+ channel, ROMK2 (kir1.2).
Am J Physiol. 1998 Sep;275(3):F415-22. doi: 10.1152/ajprenal.1998.275.3.F415.
10
The structure of the potassium channel: molecular basis of K+ conduction and selectivity.
Science. 1998 Apr 3;280(5360):69-77. doi: 10.1126/science.280.5360.69.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验