Suppr超能文献

生物素亚砜还原酶的动力学和作用机制特性

Kinetic and mechanistic properties of biotin sulfoxide reductase.

作者信息

Pollock V V, Barber M J

机构信息

Department of Biochemistry and Molecular Biology, College of Medicine University of South Florida, Tampa, Florida 33612, USA.

出版信息

Biochemistry. 2001 Feb 6;40(5):1430-40. doi: 10.1021/bi001842d.

Abstract

Rhodobacter sphaeroides f. sp. denitrificans biotin sulfoxide reductase catalyzes the reduction of d-biotin d-sulfoxide (BSO) to biotin. Initial rate studies of the homogeneous recombinant enzyme, expressed in Escherichia coli, have demonstrated that the purified protein utilizes NADPH as a facile electron donor in the absence of any additional auxiliary proteins. We have previously shown [Pollock, V. V., and Barber, M. J. (1997) J. Biol. Chem. 272, 3355-3362] that, at pH 8 and in the presence of saturating concentrations of BSO, the enzyme exhibits, a marked preference for NADPH (k(cat,app) = 500 s(-1), K(m,app) = 269 microM, and k(cat,app)/K(m,app) = 1.86 x 10(6) M(-1) s(-1)) compared to NADH (k(cat,app) = 47 s(-1), K(m,app) = 394 microM, and k(cat,app)/K(m,app) = 1.19 x 10(5) M(-1) s(-1)). Production of biotin using NADPH as the electron donor was confirmed by both the disk biological assay and by reversed-phase HPLC analysis of the reaction products. The purified enzyme also utilized ferricyanide as an artificial electron acceptor, which effectively suppressed biotin sulfoxide reduction and biotin formation. Analysis of the enzyme isolated from tungsten-grown cells yielded decreased reduced methyl viologen:BSO reductase, NADPH:BSO reductase, and NADPH:FR activities, confirming that Mo is required for all activities. Kinetic analyses of substrate inhibition profiles revealed that the enzyme followed a Ping Pong Bi-Bi mechanism with both NADPH and BSO exhibiting double competitive substrate inhibition. Replots of the 1/v-axes intercepts of the parallel asymptotes obtained at several low concentrations of fixed substrate yielded a K(m) for BSO of 714 and 65 microM for NADPH. In contrast, utilizing NADH as an electron donor, the replots yielded a K(m) for BSO of 132 microM and 1.25 mM for NADH. Slope replots of data obtained at high concentrations of BSO yielded a K(i) for BSO of 6.10 mM and 900 microM for NADPH. Kinetic isotope studies utilizing stereospecifically deuterated NADPD indicated that BSO reductase uses specifically the 4R-hydrogen of the nicotinamide ring. Cyanide inhibited NADPH:BSO and NADPH:FR activities in a reversible manner while diethylpyrocarbonate treatment resulted in complete irreversible inactivation of the enzyme concomitant with molybdenum cofactor release, indicating that histidine residues are involved in cofactor-binding.

摘要

球形红杆菌反硝化亚种生物素亚砜还原酶催化d-生物素d-亚砜(BSO)还原为生物素。对在大肠杆菌中表达的纯合重组酶进行的初始速率研究表明,在没有任何额外辅助蛋白的情况下,纯化后的蛋白利用NADPH作为便捷的电子供体。我们之前已经表明[波洛克,V. V.,和巴伯,M. J.(1997年)《生物化学杂志》272卷,3355 - 3362页],在pH 8且存在饱和浓度BSO的情况下,与NADH相比,该酶对NADPH表现出明显的偏好(催化常数表观值k(cat,app) = 500 s⁻¹,米氏常数表观值K(m,app) = 269 μM,催化常数表观值与米氏常数表观值的比值k(cat,app)/K(m,app) = 1.86×10⁶ M⁻¹ s⁻¹)(NADH的催化常数表观值k(cat,app) = 47 s⁻¹,米氏常数表观值K(m,app) = 394 μM,催化常数表观值与米氏常数表观值的比值k(cat,app)/K(m,app) = 1.19×10⁵ M⁻¹ s⁻¹)。通过纸片生物测定法以及对反应产物进行反相高效液相色谱分析,证实了以NADPH作为电子供体生产生物素的过程。纯化后的酶还利用铁氰化物作为人工电子受体,这有效地抑制了生物素亚砜的还原和生物素的形成。对从钨培养细胞中分离出的酶进行分析,发现甲基紫精还原态:BSO还原酶、NADPH:BSO还原酶以及NADPH:FR活性均降低,这证实了钼是所有这些活性所必需的。对底物抑制曲线的动力学分析表明,该酶遵循乒乓双底物机制,NADPH和BSO均表现出双竞争性底物抑制。在几种低浓度固定底物条件下获得的平行渐近线的1/v轴截距的重绘图,得出BSO的米氏常数K(m)为714,NADPH的米氏常数K(m)为65 μM。相比之下,以NADH作为电子供体时,重绘图得出BSO的米氏常数K(m)为132 μM,NADH的米氏常数K(m)为1.25 mM。在高浓度BSO条件下获得的数据的斜率重绘图得出BSO的抑制常数K(i)为6.10 mM,NADPH的抑制常数K(i)为900 μM。利用立体定向氘代NADPD进行的动力学同位素研究表明,BSO还原酶特异性地利用烟酰胺环的4R-氢。氰化物以可逆方式抑制NADPH:BSO和NADPH:FR活性,而焦碳酸二乙酯处理导致酶完全不可逆失活,同时伴随着钼辅因子的释放,这表明组氨酸残基参与辅因子结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验