Suppr超能文献

十足目甲壳动物渗透调节的神经内分泌调控与呼吸空气的进化

Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans.

作者信息

Morris S

机构信息

Morlab, School of Biological Sciences, University of Bristol, BS8 1UG, UK.

出版信息

J Exp Biol. 2001 Mar;204(Pt 5):979-89. doi: 10.1242/jeb.204.5.979.

Abstract

Gills are the primary organ for salt transport, but in land crabs they are removed from water and thus ion exchanges, as well as CO(2) and ammonia excretion, are compromised. Urinary salt loss is minimised in land crabs by redirecting the urine across the gills where salt reabsorption occurs. Euryhaline marine crabs utilise apical membrane branchial Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange powered by a basal membrane Na(+)/K(+)-ATPase, but in freshwater crustaceans an apical V-ATPase provides for electrogenic uptake of Cl(-) in exchange for HCO(3)(-). The HCO(3)(-) is provided by carbonic anhydrase facilitating CO(2) excretion while NH(4)(+) can substitute for K(+) in the basal ATPase and for H(+) in the apical exchange. Gecarcinid land crabs and the terrestrial anomuran Birgus latro can lower the NaCl concentration of the urine to 5 % of that of the haemolymph as it passes across the gills. This provides a filtration-reabsorption system analogous to the vertebrate kidney. Crabs exercise hormonal control over branchial transport processes. Aquatic hyper-regulators release neuroamines from the pericardial organs, including dopamine and 5-hydroxytryptamine (5-HT), which via a cAMP-mediated phosphorylation stimulate Na(+)/K(+)-ATPase activity and NaCl uptake. Freshwater species utilise a V-ATPase, and additional mechanisms of control have been suggested. Crustacean hyperglycaemic hormone (CHH) has now also been confirmed to have effects on hydromineral regulation, and a putative role for neuropeptides in salt and water balance suggests that current models for salt regulation are probably incomplete. In a terrestrial crabs there may be controls on both active uptake and diffusive loss. The land crab Gecarcoidea natalis drinking saline water for 3 weeks reduced net branchial Na(+) uptake but not Na(+)/K(+)-ATPase activity, thus implying a reduction in diffusive Na(+) loss. Further, in G. natalis Na(+) uptake and Na(+)/K(+)-ATPase were stimulated by 5-HT independently of cAMP. Conversely, in the anomuran B. latro, branchial Na(+) and Cl(-) uptake and Na(+)/K(+)-ATPase are inhibited by dopamine, mediated by cAMP. There has been a multiple evolution of a kidney-type system in terrestrial crabs capable of managing salt, CO(2) and NH(3) movements.

摘要

鳃是盐分运输的主要器官,但陆生蟹类脱离了水环境,因此离子交换以及二氧化碳和氨的排泄都会受到影响。陆生蟹类通过使尿液流经发生盐分重吸收的鳃,将尿盐损失降至最低。广盐性海洋蟹类利用由基底膜钠钾ATP酶驱动的顶端膜鳃钠氢和氯碳酸氢根交换,但在淡水甲壳类动物中,顶端V型ATP酶促进氯的电生性摄取以交换碳酸氢根。碳酸氢根由碳酸酐酶提供,有助于二氧化碳的排泄,而铵离子可在基底ATP酶中替代钾离子,在顶端交换中替代氢离子。地蟹科陆生蟹类和陆生异尾类椰子蟹在尿液流经鳃时,可将尿液中的氯化钠浓度降至血淋巴的5%。这提供了一个类似于脊椎动物肾脏的过滤重吸收系统。蟹类通过激素控制鳃的运输过程。水生高渗调节者从围心器官释放神经胺,包括多巴胺和5-羟色胺(5-HT),它们通过cAMP介导的磷酸化刺激钠钾ATP酶活性和氯化钠摄取。淡水物种利用V型ATP酶,并且有人提出了其他控制机制。甲壳类高血糖激素(CHH)现已被证实对水盐调节有影响,并且神经肽在盐和水平衡中的假定作用表明当前的盐调节模型可能并不完整。在陆生蟹类中,可能对主动摄取和扩散损失都有控制。陆地蟹类纳塔尔陆方蟹饮用盐水3周后,鳃对钠的净摄取减少,但钠钾ATP酶活性未受影响,因此意味着扩散性钠损失减少。此外,在纳塔尔陆方蟹中,5-HT可独立于cAMP刺激钠摄取和钠钾ATP酶。相反,在异尾类椰子蟹中,多巴胺通过cAMP介导抑制鳃对钠和氯的摄取以及钠钾ATP酶。陆生蟹类中能够管理盐、二氧化碳和氨移动的肾型系统已经多次进化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验