Baker R R, Chang H Y
Department of Biochemistry, University of Toronto, Ontario, Canada.
Mol Cell Biochem. 2000 Dec;215(1-2):135-44. doi: 10.1023/a:1026535611654.
CoA-independent transacylase activities generating alkylacylglycerophosphocholine (AAGPC) from alkylglycerophosphocholine (1-alkyl GPC) were considerably enriched in neuronal nuclei isolated from rabbit cerebral cortex. Specific nuclear transacylation activities were 13 times the corresponding microsomal values. Several lysophospholipids, notably 1-acyl glycerophosphocholine (1-acyl GPC), 1-alkenyl GPC and 1-alkenyl GPE (1-alkenyl glycerophosphoethanolamine) inhibited the transacylation of 1-alkyl GPC. The inhibitory effects of 1-acyl GPC were seen in the presence of MAFP (methyl arachidonoylfluorophosphonate) or free oleate, compounds that inhibit neuronal nuclear lysophospholipase. When neuronal nuclei were preincubated with 1-alkyl GPC, the radioactive AAGPC product served as donor in transacylation reactions, to generate 1-alkyl GPC. In these nuclear reactions, 1-palmitoyl GPE and 1-palmitoyl GPC appeared to be poor acceptor substrates, when compared with corresponding 1-alkyl and 1-alkenyl analogues. The presence of free oleate or MAFP in the reactions containing 1-acyl GPC boosted the release of 1-alkyl GPC from AAGPC. These observations are of particular relevance to brain ischemia in which lysophospholipid, free fatty acid, and platelet-activating factor (PAF) levels rise dramatically. PAF can be made by the nuclear acetylation of 1-alkyl GPC, which is formed by nuclear transacylation mechanisms. Yet transacylase also removes 1-alkyl GPC, and thus this enzyme activity can regulate 1-alkyl GPC availability. Our observations indicate that lysophospholipids promote the formation of 1-alkyl GPC from nuclear AAGPC via transacylation, while free fatty acid likely prolongs the lifetime of 1-acyl lysophospholipids substrates by lysophospholipase inhibition. Similarly, once 1-alkyl GPC is formed, other lysophospholipids effectively compete with this 1-alkyl analogue and reduce its conversion back to AAGPC by transacylation. Free oleate, in this case, sustains 1-acyl lysophospholipid inhibitors of 1-alkyl GPC transacylation. Thus the cycle of transacylation may favour 1-alkyl GPC formation during ischemia, increasing levels of 1-alkyl GPC for nuclear acetylation reactions and PAF formation. The nuclear generation of PAF is of considerable importance as PAF can play regulatory roles in transcription events associated with inflammation.
从兔大脑皮层分离的神经元细胞核中,由烷基甘油磷酸胆碱(1-烷基甘油磷酸胆碱)生成烷基酰基甘油磷酸胆碱(AAGPC)的不依赖辅酶A的转酰基酶活性显著富集。特定的细胞核转酰基酶活性是相应微粒体值的13倍。几种溶血磷脂,特别是1-酰基甘油磷酸胆碱(1-酰基甘油磷酸胆碱)、1-烯基甘油磷酸胆碱和1-烯基甘油磷酸乙醇胺(1-烯基甘油磷酸乙醇胺)抑制1-烷基甘油磷酸胆碱的转酰基作用。在存在MAFP(甲基花生四烯酰氟磷酸酯)或游离油酸(抑制神经元细胞核溶血磷脂酶的化合物)的情况下,可观察到1-酰基甘油磷酸胆碱的抑制作用。当神经元细胞核与1-烷基甘油磷酸胆碱预孵育时,放射性AAGPC产物在转酰基反应中作为供体,生成1-烷基甘油磷酸胆碱。在这些细胞核反应中,与相应的1-烷基和1-烯基类似物相比,1-棕榈酰甘油磷酸乙醇胺和1-棕榈酰甘油磷酸胆碱似乎是较差的受体底物。在含有1-酰基甘油磷酸胆碱的反应中,游离油酸或MAFP的存在促进了AAGPC中1-烷基甘油磷酸胆碱的释放。这些观察结果与脑缺血特别相关,在脑缺血中溶血磷脂、游离脂肪酸和血小板活化因子(PAF)水平会急剧上升。PAF可通过1-烷基甘油磷酸胆碱的细胞核乙酰化生成,而1-烷基甘油磷酸胆碱是由细胞核转酰基机制形成的。然而,转酰基酶也会去除1-烷基甘油磷酸胆碱,因此这种酶活性可以调节1-烷基甘油磷酸胆碱的可用性。我们的观察结果表明,溶血磷脂通过转酰基作用促进细胞核AAGPC形成1-烷基甘油磷酸胆碱,而游离脂肪酸可能通过抑制溶血磷脂酶延长1-酰基溶血磷脂底物的寿命。同样,一旦形成1-烷基甘油磷酸胆碱,其他溶血磷脂会有效地与这种1-烷基类似物竞争,并通过转酰基作用减少其转化回AAGPC。在这种情况下,游离油酸维持1-烷基甘油磷酸胆碱转酰基作用的1-酰基溶血磷脂抑制剂。因此,转酰基循环可能在缺血期间有利于1-烷基甘油磷酸胆碱的形成,增加用于细胞核乙酰化反应和PAF形成的1-烷基甘油磷酸胆碱水平。PAF的细胞核生成具有相当重要的意义,因为PAF可以在与炎症相关的转录事件中发挥调节作用。