Suppr超能文献

Model organisms: new insights into ion channel and transporter function. L-type calcium channels regulate epithelial fluid transport in Drosophila melanogaster.

作者信息

MacPherson M R, Pollock V P, Broderick K E, Kean L, O'Connell F C, Dow J A, Davies S A

机构信息

Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Glasgow G11 6NU, United Kingdom.

出版信息

Am J Physiol Cell Physiol. 2001 Feb;280(2):C394-407. doi: 10.1152/ajpcell.2001.280.2.C394.

Abstract

The neuropeptide CAP2b stimulates fluid transport obligatorily via calcium entry, nitric oxide, and cGMP in Drosophila melanogaster Malpighian (renal) tubules. We have shown by RT-PCR that the Drosophila L-type calcium channel alpha1-subunit genes Dmca1D and Dmca1A (nbA) are both expressed in tubules. CAP2b-stimulated fluid transport and cytosolic calcium concentration ([Ca2+]i) increases are inhibited by the L-type calcium channel blockers verapamil and nifedipine. cGMP-stimulated fluid transport is verapamil and nifedipine sensitive. Furthermore, cGMP induces a slow [Ca2+]i increase in tubule principal cells via verapamil- and nifedipine-sensitive calcium entry; RT-PCR shows that tubules express Drosophila cyclic nucleotide-gated channel (cng). Additionally, thapsigargin-induced [Ca2+]i increase is verapamil sensitive. Phenylalkylamines bind with differing affinities to the basolateral and apical surfaces of principal cells in the main segment; however, dihydropyridine binds apically in the tubule initial segment. Immunocytochemical evidence suggests localization of alpha1-subunits to both basolateral and apical surfaces of principal cells in the tubule main segment. We suggest roles for L-type calcium channels and cGMP-mediated calcium influx in both calcium signaling and fluid transport mechanisms in Drosophila.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验