Jacobs H, Bross L
Basel Institute for Immunology, Grenzacherstrasse 487, CH-4005, Basel, Switzerland.
Curr Opin Immunol. 2001 Apr;13(2):208-18. doi: 10.1016/s0952-7915(00)00206-5.
How germinal center (GC) B cells diversify their rearranged immunoglobulin genes by somatic hypermutation is unknown. However, the GC-specific activation-induced cytidine deaminase has been identified as a key factor controlling two central GC-specific events: somatic hypermutation and class-switch recombination of immunoglobulin genes. This factor may function as a catalytic subunit of an RNA-editing complex or, more directly, on DNA as a deoxy-cytidine deaminase in the hypermutation domain and class-switch region. Deamination of deoxy-cytidines on both strands may result in staggered DNA double-strand breaks (DSBs) that, in the hypermutation domain, become processed by member(s) of newly identified error-prone DNA polymerases. Direct evidence for DSBs in hot-spots of hypermutating immunoglobulin genes has been provided, implicating DSBs as reaction intermediates of an error-prone DSB-repair pathway acting specifically in GC B cells. These recent findings are key to the identification of the hypermutation mechanism.
生发中心(GC)B细胞如何通过体细胞超突变使其重排的免疫球蛋白基因多样化尚不清楚。然而,GC特异性激活诱导的胞苷脱氨酶已被确定为控制两个核心GC特异性事件的关键因素:体细胞超突变和免疫球蛋白基因的类别转换重组。该因子可能作为RNA编辑复合物的催化亚基发挥作用,或者更直接地,在超突变结构域和类别转换区域作为脱氧胞苷脱氨酶作用于DNA。两条链上的脱氧胞苷脱氨基可能导致交错的DNA双链断裂(DSB),在超突变结构域中,这些断裂由新鉴定的易出错DNA聚合酶的成员进行处理。已经提供了在超突变免疫球蛋白基因热点中存在DSB的直接证据,这表明DSB是在GC B细胞中特异性起作用的易出错DSB修复途径的反应中间体。这些最新发现是识别超突变机制的关键。