Fadili M J, Ruan S, Bloyet D, Mazoyer B
GREYC-ISMRA UPRESA 6072, 6 Bd Maréchal Juin, 14050, Caen, France.
Med Image Anal. 2001 Mar;5(1):55-67. doi: 10.1016/s1361-8415(00)00035-9.
The aim of this paper is to present an exploratory data-driven strategy based on Unsupervised Fuzzy Clustering Analysis (UFCA) and its potential for fMRI data analysis in the temporal domain. The a priori definition of the number of clusters is addressed and solved using heuristics. An original validity criterion is proposed taking into account data geometry and the partition Membership Functions (MFs). From our simulations, this criterion is shown to outperform other indices used in the literature. The influence of the fuzziness index was studied using simulated activation combined with real life noise data acquired from subjects under a resting state. Receiver Operating Characteristics (ROC) methodology is implemented to assess the performance of the proposed UFCA with respect to the fuzziness index. An interval of choice around 2, a value widely used in FCA, is shown to yield the best performance.
本文旨在提出一种基于无监督模糊聚类分析(UFCA)的探索性数据驱动策略及其在时域功能磁共振成像(fMRI)数据分析中的潜力。通过启发式方法解决了聚类数量的先验定义问题。提出了一种考虑数据几何形状和划分隶属函数(MFs)的原始有效性标准。从我们的模拟结果来看,该标准优于文献中使用的其他指标。利用模拟激活结合静息状态下从受试者获取的真实噪声数据研究了模糊指数的影响。采用接收者操作特征(ROC)方法来评估所提出的UFCA在模糊指数方面的性能。结果表明,在模糊聚类分析(FCA)中广泛使用的约为2的选择区间能产生最佳性能。