Cloutier J F, Castonguay A, O'Connor T R, Drouin R
Laboratory of Cancer Etiology and Chemoprevention, Faculty of Pharmacy, Laval University, Quebec City, G1K 7P4, Canada.
J Mol Biol. 2001 Feb 16;306(2):169-88. doi: 10.1006/jmbi.2000.4371.
We determined the adduct maps of S(N)1 and S(N)2 alkylating agents in cultured human cells (in vivo) and in vitro to probe DNA-protein interactions along sequences of the promoter and exon 1 of the Fragile-X mental retardation 1 (FMR1) gene. Using ligation-mediated polymerase chain reaction (LMPCR), we compared the piperidine-sensitive alkylpurines sites generated by treating cultured cells (in vivo) and naked DNA (in vitro) with S(N)1 (N-methyl-N-nitrosourea, N-nitroso(acetoxymethyl)methylamine and 1-methyl-3-nitro-1-nitrosoguanidine) and S(N)2 alkylating agents (dimethyl sulfate (DMS), methane sulfonic acid methyl ester, iodo methane, diethyl sulfate, methane sulfonic acid ethyl ester and iodo ethane). The FMR1 promoter has four sites where DNA-protein interactions are observed. In these regions, the S(N)1 methylating agent reactions produced only hypo-reactive sites. In contrast, iodoalkane S(N)2 alkylating agents (MeI and EtI) reactions generated only hyper-reactive sites. Although there are hyper-reactive sites for the other S(N)2 reagents, the hyper-reactive site at +14 on the FMR1 map is more pronounced for the sulfate and sulfonate-derived alkylating agents than for the iodoalkanes. However, DMS modification in the presence of methyl sulfone, a compound that does not alkylate DNA, eliminates the hyper-reactive site observed at +14. This suggests that the electron-rich oxygen atoms of the sulfate and sulfonate-derived S(N)2 alkylating agent structure position the alkylating moiety to the neighboring N-7-guanine position to favor alkyl transfer to the guanine. Using KMnO(4) to probe for single-strand DNA, an unpaired cytosine base was detected at the 5'-side of the hyper- reactive guanine base at position +14, consistent with the formation of a local DNA single-strand bulge. In conclusion, we show that the sequence context-dependent formation of alkylpurines is determined by the chemical nature of the alkylating agent, the DNA sequence context, chromatin structure, and the presence of other non-reactive molecules that can inhibit alkylation.
我们测定了S(N)1和S(N)2烷基化剂在培养的人类细胞(体内)和体外的加合物图谱,以探究脆性X智力低下1(FMR1)基因启动子和外显子1序列上的DNA-蛋白质相互作用。使用连接介导的聚合酶链反应(LMPCR),我们比较了用S(N)1(N-甲基-N-亚硝基脲、N-亚硝基(乙酰氧基甲基)甲胺和1-甲基-3-硝基-1-亚硝基胍)和S(N)2烷基化剂(硫酸二甲酯(DMS)、甲磺酸甲酯、碘甲烷、硫酸二乙酯、甲磺酸乙酯和碘乙烷)处理培养细胞(体内)和裸露DNA(体外)产生的对哌啶敏感的烷基嘌呤位点。FMR1启动子有四个观察到DNA-蛋白质相互作用的位点。在这些区域,S(N)1甲基化剂反应仅产生低反应性位点。相反,碘代烷S(N)2烷基化剂(MeI和EtI)反应仅产生高反应性位点。虽然其他S(N)2试剂也有高反应性位点,但FMR1图谱上+14处的高反应性位点对于硫酸盐和磺酸盐衍生的烷基化剂比碘代烷更明显。然而,在不存在使DNA烷基化的化合物甲砜的情况下进行DMS修饰,可消除在+14处观察到的高反应性位点。这表明硫酸盐和磺酸盐衍生的S(N)2烷基化剂结构中富含电子的氧原子将烷基化部分定位到相邻的N-7-鸟嘌呤位置,有利于烷基转移到鸟嘌呤上。使用高锰酸钾探测单链DNA,在+14位高反应性鸟嘌呤碱基的5'侧检测到一个未配对的胞嘧啶碱基,这与局部DNA单链凸起的形成一致。总之,我们表明烷基嘌呤的序列背景依赖性形成由烷基化剂的化学性质、DNA序列背景、染色质结构以及其他可抑制烷基化的非反应性分子的存在决定。