釉原蛋白的可控蛋白水解揭示了羧基末端和氨基末端区域的暴露。

Controlled proteolysis of amelogenins reveals exposure of both carboxy- and amino-terminal regions.

作者信息

Moradian-Oldak J, Jimenez I, Maltby D, Fincham A G

机构信息

Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.

出版信息

Biopolymers. 2001 Jun;58(7):606-16. doi: 10.1002/1097-0282(200106)58:7<606::AID-BIP1034>3.0.CO;2-8.

Abstract

The matrix-mediated enamel biomineralization involves secretion of the enamel specific amelogenin proteins that through self-assembly into nanosphere structures provide the framework within which the initial enamel crystallites are formed. During enamel mineralization, amelogenin proteins are processed by tooth-specific proteinases. The aim of this study was to explore the factors that affect the activity of enamel proteases to process amelogenins. Two factors including amelogenin self-assembly and enzyme specificity are considered. We applied a limited proteolysis approach, combined with mass spectrometry, in order to determine the surface accessibility of conserved domains of amelogenin assemblies. A series of commercially available proteinases as well as a recombinant enamelysin were used, and their proteolytic actions on recombinant amelogenin were examined under controlled and limited conditions. The N-terminal region of the recombinant mouse amelogenin rM179 was found to be more accessible to tryptic digest than the C-terminal region. The endoproteinase Glu-C cleaved amelogenin at both the N-terminal (E18/V) and C-terminal (E178/V) sites. Chymotrypsin cleaved amelogenin at both the carboxy- (F151/S) and amino-terminal (W25/Y) regions. Interestingly, the peptide bond F/S152 was also recognized by the action of enamelysin on recombinant mouse amelogenin whereas thermolysin cleaved the S152/M153 peptide bond in addition to T63/L64 and I159/L160 and M29/I30 bonds. It was then concluded that regions at both the carboxy- and amino-terminal were exposed on the surface of amelogenin nanospheres when the N-terminal 17 amino acid residues were proposed to be protected from proteolysis, presumably as the result of their involvement in direct protein-protein interaction. Cleavage around the FSM locus occurred by recombinant enamelysin under limited conditions, in both mouse (F151/S152) and pig amelogenins (S148/M). Our in vitro observations on the limited proteolysis of amelogenin by enamelysin suggest that enamelysin cleaved amelogenin at the C-terminal region showing a preference of the enzyme to cleave the S/M and F/S bonds. The present limited proteolysis studies provided insight into the mechanisms of amelogenin degradation during amelogenesis.

摘要

基质介导的釉质生物矿化涉及釉质特异性釉原蛋白的分泌,这些蛋白通过自组装形成纳米球结构,为最初的釉质微晶形成提供框架。在釉质矿化过程中,釉原蛋白由牙齿特异性蛋白酶进行加工处理。本研究的目的是探索影响釉质蛋白酶加工处理釉原蛋白活性的因素。考虑了两个因素,即釉原蛋白的自组装和酶的特异性。我们应用了有限蛋白水解方法,并结合质谱分析,以确定釉原蛋白组装体保守结构域的表面可及性。使用了一系列市售蛋白酶以及一种重组釉质溶解素,并在可控和有限的条件下检测它们对重组釉原蛋白的蛋白水解作用。发现重组小鼠釉原蛋白rM179的N端区域比C端区域更容易被胰蛋白酶消化。内切蛋白酶Glu-C在N端(E18/V)和C端(E178/V)位点切割釉原蛋白。胰凝乳蛋白酶在羧基端(F151/S)和氨基端(W25/Y)区域切割釉原蛋白。有趣的是,重组小鼠釉原蛋白上的釉质溶解素作用也识别肽键F/S152,而嗜热菌蛋白酶除了切割T63/L64、I159/L160和M29/I30键外,还切割S152/M153肽键。然后得出结论,当N端的17个氨基酸残基被认为受到蛋白水解保护时,羧基端和氨基端区域都暴露在釉原蛋白纳米球的表面,推测这是由于它们参与直接的蛋白质-蛋白质相互作用的结果。在有限条件下,重组釉质溶解素在小鼠(F151/S152)和猪釉原蛋白(S148/M)的FSM位点周围均发生切割。我们对釉质溶解素对釉原蛋白有限蛋白水解的体外观察表明,釉质溶解素在C端区域切割釉原蛋白,显示出该酶对切割S/M和F/S键的偏好。目前的有限蛋白水解研究为釉质形成过程中釉原蛋白降解的机制提供了深入了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索