Turowski M, Morimoto T, Kimata K, Monde H, Ikegami T, Hosoya K, Tanaka N
Department of Polymer Science and Engineering, Kyoto Institute of Technology, Japan.
J Chromatogr A. 2001 Mar 16;911(2):177-90. doi: 10.1016/s0021-9673(00)01193-6.
Selectivity of 15 stationary phases was examined, either commercially available or synthesized in-house. The highest selectivity factors were observed for solute molecules having different polarizability on the 3-(pentabromobenzyloxy)propyl phase (PBB), followed by the 2-(1-pyrenyl)ethyl phase (PYE). Selectivity of fluoroalkane 4,4-di(trifluoromethyl)-5,5,6,6,7,7,7-heptafluoroheptyl (F13C9) phase is lowest among all phases for all compounds except for fluorinated ones. Aliphatic octyl (C8) and octadecyl (C18) phases demonstrated considerable selectivity, especially for alkyl compounds. While PBB showed much greater preference for compounds with high polarizability containing heavy atoms than C18 phase, F13C9 phase showed the exactly opposite tendency. These three stationary phases can offer widely different selectivity that can be utilized when one stationary phase fails to provide separation for certain mixtures. The retention and selectivity of solutes in reversed-phase liquid chromatography is related to the mobile phase and the stationary phase effects. The mobile phase effect, related to the hydrophobic cavity formation around non-polar solutes, is assumed to have a dominant effect on retention upon aliphatic stationary phases such as C8, C18. In a common mobile phase significant stationary phase effect can be attributed to dispersion interaction. Highly dispersive stationary phases such as PBB and PYE retain solutes to a significant extent by (attractive) dispersion interaction with the stationary phase ligands, especially for highly dispersive solutes containing aromatic functionality and/or heavy atoms. The contribution of dispersion interaction is shown to be much less on C18 or C8 phases and was even disadvantageous on F13C9 phase. Structural properties of stationary phases are analyzed and confirmed by means of quantitative structure-chromatographic retention (QSRR) study.
研究了15种固定相的选择性,这些固定相有的是市售的,有的是在内部合成的。在3-(五溴苄氧基)丙基固定相(PBB)上,对于具有不同极化率的溶质分子观察到了最高的选择性因子,其次是2-(1-芘基)乙基固定相(PYE)。对于所有化合物(除含氟化合物外),氟代烷烃4,4-二(三氟甲基)-5,5,6,6,7,7,7-七氟庚基(F13C9)固定相的选择性在所有固定相中最低。脂肪族辛基(C8)和十八烷基(C18)固定相表现出相当大的选择性,特别是对于烷基化合物。虽然PBB对含有重原子的高极化率化合物的偏好远大于C18固定相,但F13C9固定相表现出完全相反的趋势。这三种固定相可以提供差异很大的选择性,当一种固定相无法对某些混合物进行分离时,可以利用这些选择性。反相液相色谱中溶质的保留和选择性与流动相和固定相效应有关。与非极性溶质周围疏水腔形成有关的流动相效应,被认为对在脂肪族固定相(如C8、C18)上的保留起主导作用。在常见的流动相中,显著的固定相效应可归因于色散相互作用。高度分散的固定相(如PBB和PYE)通过与固定相配体的(吸引性)色散相互作用在很大程度上保留溶质,特别是对于含有芳香官能团和/或重原子的高度分散溶质。色散相互作用在C18或C8固定相上的贡献要小得多,在F13C9固定相上甚至是不利的。通过定量结构-色谱保留(QSRR)研究对固定相的结构性质进行了分析和确认。