Myles T, Le Bonniec B F, Betz A, Stone S R
Department of Haematology, University of Cambridge, MRC Centre, Hills Road, Cambridge CB2 2QH, United Kingdom.
Biochemistry. 2001 Apr 24;40(16):4972-9. doi: 10.1021/bi0023549.
Electrostatic interactions between the thrombin anion-binding exosite-I (ABE-I) and the hirudin C-terminal tail play an important role in the formation of the thrombin-hirudin inhibitor complex and serves as a model for the interactions of thrombin with its many other ligands. The role of each solvent exposed basic residue in ABE-I (Arg(35), Lys(36), Arg(67), Arg(73), Arg(75), Arg(77a), Lys(81), Lys(109), Lys(110), and Lys(149e)) in electrostatic steering and ionic tethering in the formation of thrombin-hirudin inhibitor complexes was explored by site directed mutagenesis. The contribution to the binding energy (deltaG(degrees)b) by each residue varied from 1.9 kJ mol(-)(1) (Lys(110)) to 15.3 kJ mol(-1) (Arg(73)) and were in general agreement to their observed interactions with hirudin residues in the thrombin-hirudin crystal structure [Rydel, T. J., Tulinsky, A., Bode, W., and Huber, R. (1991) J. Mol. Biol. 221, 583-601]. Coupling energies (delta deltaG(degrees) int) were calculated for the major ion-pair interactions involved in ionic tethering using complementary hirudin mutants (h-D55N, h-E57Q, and h-E58Q). Cooperativity was seen for the h-Asp(55)/Arg(73) ion pair (2.4 kJ mol(-1)); however, low coupling energies for h-Asp(55)/Lys(149e) (deltadeltaG(degrees)int 0.6 kJ mol(-1)) and h-Glu(58)/Arg(77a) (deltadeltaG(degrees)int 0.9 kJ mol(-1)) suggest these are not major interactions, as anticipated by the crystal structure. Interestingly, high coupling energies were seen for the intermolecular ion-pair h-Glu(57)/Arg(75) (deltadeltaG(degrees)int 2.3 kJ mol(-1)) and for the solvent bridge h-Glu(57)/Arg(77a) (deltadeltaG(degrees)int 2.7 kJ mol(-1)) indicating that h-Glu(57) interacts directly with both Arg(75) and Arg(77a) in the thrombin-hirudin inhibitor complex. The remaining ABE-I residues that do not form major contacts in tethering the C-terminal tail of hirudin make small but collectively important contributions to the overall positive electrostatic field generated by ABE-I important in electrostatic steering.
凝血酶阴离子结合外位点-I(ABE-I)与水蛭素C末端尾巴之间的静电相互作用在凝血酶-水蛭素抑制剂复合物的形成中起重要作用,并可作为凝血酶与其许多其他配体相互作用的模型。通过定点诱变研究了ABE-I中每个暴露于溶剂的碱性残基(Arg(35)、Lys(36)、Arg(67)、Arg(73)、Arg(75)、Arg(77a)、Lys(81)、Lys(109)、Lys(110)和Lys(149e))在凝血酶-水蛭素抑制剂复合物形成过程中的静电引导和离子束缚作用。每个残基对结合能(ΔG°b)的贡献从1.9 kJ mol⁻¹(Lys(110))到15.3 kJ mol⁻¹(Arg(73))不等,总体上与它们在凝血酶-水蛭素晶体结构中与水蛭素残基的相互作用一致[Rydel, T. J., Tulinsky, A., Bode, W., and Huber, R. (1991) J. Mol. Biol. 221, 583 - 601]。使用互补的水蛭素突变体(h-D55N、h-E57Q和h-E58Q)计算了离子束缚中涉及的主要离子对相互作用的耦合能(ΔΔG°int)。h-Asp(55)/Arg(73)离子对表现出协同作用(2.4 kJ mol⁻¹);然而,h-Asp(55)/Lys(149e)(ΔΔG°int 0.6 kJ mol⁻¹)和h-Glu(58)/Arg(77a)(ΔΔG°int 0.9 kJ mol⁻¹)的耦合能较低,表明这些并非主要相互作用,正如晶体结构所预期的那样。有趣的是,分子间离子对h-Glu(57)/Arg(75)(ΔΔG°int 2.3 kJ mol⁻¹)和溶剂桥h-Glu(57)/Arg(77a)(ΔΔG°int 2.7 kJ mol⁻¹)的耦合能较高,表明在凝血酶-水蛭素抑制剂复合物中h-Glu(57)直接与Arg(75)和Arg(77a)相互作用。在束缚水蛭素C末端尾巴时不形成主要接触的其余ABE-I残基对ABE-I产生的整体正静电场有小但集体上重要的贡献,这在静电引导中很重要。