Parisio F, Moraes F, Miranda J A, Widom M
Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Mar;63(3 Pt 2):036307. doi: 10.1103/PhysRevE.63.036307. Epub 2001 Feb 27.
The Saffman-Taylor problem addresses the morphological instability of an interface separating two immiscible, viscous fluids when they move in a narrow gap between two flat parallel plates (Hele-Shaw cell). In this work, we extend the classic Saffman-Taylor situation, by considering the flow between two curved, closely spaced, concentric spheres (spherical Hele-Shaw cell). We derive the mode-coupling differential equation for the interface perturbation amplitudes and study both linear and nonlinear flow regimes. The effect of the spherical cell (positive) spatial curvature on the shape of the interfacial patterns is investigated. We show that stability properties of the fluid-fluid interface are sensitive to the curvature of the surface. In particular, it is found that positive spatial curvature inhibits finger tip-splitting. Hele-Shaw flow on weakly negative, curved surfaces is briefly discussed.
萨夫曼-泰勒问题研究的是,当两种不互溶的粘性流体在两个平行平板之间的狭窄间隙(赫勒肖盒)中流动时,分隔它们的界面的形态不稳定性。在这项工作中,我们通过考虑两个弯曲、间距紧密的同心球体之间的流动(球形赫勒肖盒),扩展了经典的萨夫曼-泰勒情形。我们推导了界面扰动幅度的模式耦合微分方程,并研究了线性和非线性流动状态。研究了球形盒(正的)空间曲率对界面图案形状的影响。我们表明,流体-流体界面的稳定性特性对表面曲率很敏感。特别是,发现正的空间曲率会抑制指尖分裂。还简要讨论了弱负曲率曲面上的赫勒肖流动。