Suppr超能文献

一种1型单纯疱疹病毒γ34.5第二位点抑制突变体,在培养的胶质母细胞瘤细胞中生长增强,但在动物体内则严重减毒。

A herpes simplex virus type 1 gamma34.5 second-site suppressor mutant that exhibits enhanced growth in cultured glioblastoma cells is severely attenuated in animals.

作者信息

Mohr I, Sternberg D, Ward S, Leib D, Mulvey M, Gluzman Y

机构信息

Department of Microbiology and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA.

出版信息

J Virol. 2001 Jun;75(11):5189-96. doi: 10.1128/JVI.75.11.5189-5196.2001.

Abstract

We describe here the neurovirulence properties of a herpes simplex virus type 1 gamma34.5 second-site suppressor mutant. gamma34.5 mutants are nonneurovirulent in animals and fail to grow in a variety of cultured cells due to a block at the level of protein synthesis. Extragenic suppressors with restored capacity to replicate in cells that normally do not support the growth of the parental gamma34.5 deletion mutant have been isolated. Although the suppressor virus reacquires the ability to grow in nonpermissive cultured cells, it remains severely attenuated in mice and is indistinguishable from the mutant gamma34.5 parent virus at the doses investigated. Repairing the gamma34.5 mutation in the suppressor mutant restores neurovirulence to wild-type levels. These studies illustrate that (i) the protein synthesis and neurovirulence defects observed in gamma34.5 mutant viruses can be genetically separated by an extragenic mutation at another site in the viral chromosome; (ii) the extragenic suppressor mutation does not affect neurovirulence; and (iii) the attenuated gamma34.5 mutant, which replicates poorly in many cell types, can be modified by genetic selection to generate a nonpathogenic variant that regains the ability to grow robustly in a nonpermissive glioblastoma cell line. As this gamma34.5 second-site suppressor variant is attenuated and replicates vigorously in neoplastic cells, it may have potential as a replication-competent, viral antitumor agent.

摘要

我们在此描述单纯疱疹病毒1型γ34.5第二位点抑制突变体的神经毒力特性。γ34.5突变体在动物体内无神经毒力,并且由于在蛋白质合成水平受阻而无法在多种培养细胞中生长。已分离出在通常不支持亲本γ34.5缺失突变体生长的细胞中具有恢复复制能力的基因外抑制子。尽管抑制病毒重新获得了在非允许性培养细胞中生长的能力,但在小鼠中它仍然严重减毒,并且在所研究的剂量下与突变体γ34.5亲本病毒没有区别。修复抑制突变体中的γ34.5突变可将神经毒力恢复到野生型水平。这些研究表明:(i)在γ34.5突变病毒中观察到的蛋白质合成和神经毒力缺陷可通过病毒染色体另一位点的基因外突变在遗传上分离;(ii)基因外抑制突变不影响神经毒力;(iii)在许多细胞类型中复制不良的减毒γ34.5突变体可通过遗传选择进行修饰,以产生一种非致病性变体,该变体重新获得在非允许性胶质母细胞瘤细胞系中强劲生长的能力。由于这种γ34.5第二位点抑制变体减毒且在肿瘤细胞中能旺盛复制,它可能具有作为有复制能力的病毒抗肿瘤剂的潜力。

相似文献

4
Enhanced antitumor efficacy of a herpes simplex virus mutant isolated by genetic selection in cancer cells.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8804-8. doi: 10.1073/pnas.161011798. Epub 2001 Jul 3.
5
Herpes simplex virus 2 ICP34.5 confers neurovirulence by regulating the type I interferon response.
Virology. 2014 Nov;468-470:330-339. doi: 10.1016/j.virol.2014.08.015. Epub 2014 Sep 17.
8
9
Role of Herpes Simplex Virus 1 γ34.5 in the Regulation of IRF3 Signaling.
J Virol. 2017 Nov 14;91(23). doi: 10.1128/JVI.01156-17. Print 2017 Dec 1.
10
Effect of γ34.5 deletions on oncolytic herpes simplex virus activity in brain tumors.
J Virol. 2012 Apr;86(8):4420-31. doi: 10.1128/JVI.00017-12. Epub 2012 Feb 15.

引用本文的文献

2
Biosafety and biohazard considerations of HSV-1-based oncolytic viral immunotherapy.
Front Mol Biosci. 2023 Sep 12;10:1178382. doi: 10.3389/fmolb.2023.1178382. eCollection 2023.
3
Advances in Alpha Herpes Viruses Vaccines for Human.
Vaccines (Basel). 2023 Jun 12;11(6):1094. doi: 10.3390/vaccines11061094.
5
In Situ Cancer Vaccination and Immunovirotherapy Using Oncolytic HSV.
Viruses. 2021 Aug 31;13(9):1740. doi: 10.3390/v13091740.
6
Oncolytic herpes virus G47Δ injected into tongue cancer swiftly traffics in lymphatics and suppresses metastasis.
Mol Ther Oncolytics. 2021 Jun 24;22:388-398. doi: 10.1016/j.omto.2021.06.008. eCollection 2021 Sep 24.
7
Potent anti-tumor effects of receptor-retargeted syncytial oncolytic herpes simplex virus.
Mol Ther Oncolytics. 2021 Aug 19;22:265-276. doi: 10.1016/j.omto.2021.08.002. eCollection 2021 Sep 24.
8
Triple-mutated oncolytic herpes virus for treating both fast- and slow-growing tumors.
Cancer Sci. 2021 Aug;112(8):3293-3301. doi: 10.1111/cas.14981. Epub 2021 Jun 9.
9
The herpesvirus accessory protein γ134.5 facilitates viral replication by disabling mitochondrial translocation of RIG-I.
PLoS Pathog. 2021 Mar 26;17(3):e1009446. doi: 10.1371/journal.ppat.1009446. eCollection 2021 Mar.
10
Anti-viral immunity in the tumor microenvironment: implications for the rational design of herpes simplex virus type 1 oncolytic virotherapy.
Curr Clin Microbiol Rep. 2019 Dec;6(4):193-199. doi: 10.1007/s40588-019-00134-3. Epub 2019 Nov 26.

本文引用的文献

3
Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):6097-101. doi: 10.1073/pnas.100415697.
4
Conditionally replicating herpes vectors for cancer therapy.
J Clin Invest. 2000 Apr;105(7):841-6. doi: 10.1172/JCI9744.
5
Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors.
Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2208-13. doi: 10.1073/pnas.040557897.
6
Genetically engineered HSV in the treatment of glioma: a review.
Rev Med Virol. 2000 Jan-Feb;10(1):17-30. doi: 10.1002/(sici)1099-1654(200001/02)10:1<17::aid-rmv258>3.0.co;2-g.
9
Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity.
Hum Gene Ther. 1999 Feb 10;10(3):385-93. doi: 10.1089/10430349950018832.
10
Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo.
J Exp Med. 1999 Feb 15;189(4):663-72. doi: 10.1084/jem.189.4.663.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验