Suppr超能文献

放射性标记氨基酸:肿瘤学的基础方面及临床应用

Radiolabeled amino acids: basic aspects and clinical applications in oncology.

作者信息

Jager P L, Vaalburg W, Pruim J, de Vries E G, Langen K J, Piers D A

机构信息

Department of Nuclear Medicine, PET Center, University Hospital Groningen, Groningen, The Netherlands.

出版信息

J Nucl Med. 2001 Mar;42(3):432-45.

Abstract

As the applications of metabolic imaging are expanding, radiolabeled amino acids may gain increased clinical interest. This review first describes the basic aspects of amino acid metabolism, then continues with basic aspects of radiolabeled amino acids, and finally describes clinical applications, with an emphasis on diagnostic value. A special focus is on (11)C-methionine, (11)C-tyrosine, and (123)I-iodomethyltyrosine, because these have been most used clinically, although their common affinity for the L-transport systems may limit generalization to other classes of amino acids. The theoretic and preclinical background of amino acid imaging is sound and supports clinical applications. The fact that amino acid imaging is less influenced by inflammation may be advantageous in comparison with (18)F-FDG PET imaging, although tumor specificity is not absolute. In brain tumor imaging, the use of radiolabeled amino acids is established, the diagnostic accuracy of amino acid imaging seems adequate, and the diagnostic value seems advantageous. The general feasibility of amino acid imaging in other tumor types has sufficiently been shown, but more research is required in larger patient series and in well-defined clinical settings.

摘要

随着代谢成像应用的不断拓展,放射性标记氨基酸可能会引起更多临床关注。本综述首先描述氨基酸代谢的基本方面,接着阐述放射性标记氨基酸的基本情况,最后描述临床应用,重点在于诊断价值。特别关注的是(11)C-蛋氨酸、(11)C-酪氨酸和(123)I-碘甲基酪氨酸,因为这些在临床上使用最为广泛,尽管它们对L转运系统的共同亲和力可能会限制将其推广至其他类别的氨基酸。氨基酸成像的理论和临床前背景坚实,支持临床应用。与(18)F-FDG PET成像相比,氨基酸成像受炎症影响较小这一事实可能具有优势,尽管肿瘤特异性并非绝对。在脑肿瘤成像中,放射性标记氨基酸的使用已确立,氨基酸成像的诊断准确性似乎足够,且诊断价值似乎具有优势。氨基酸成像在其他肿瘤类型中的总体可行性已得到充分证明,但需要在更大规模的患者系列和明确的临床环境中进行更多研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验