Shainoff J R, Ratnoff O D, Smejkal G B, DiBello P M, Welches W R, Lill H, Mitkevich O V, Periman P
Department of Chemistry Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115-2406, USA.
Thromb Res. 2001 Jan 15;101(2):91-9. doi: 10.1016/s0049-3848(00)00383-2.
The fibrinogen molecule consists of two sets of Aalpha, Bbeta, and gamma chains assembled into a bilateral disulfide linked (Aalpha, Bbeta, gamma)2 structure. Cleavage of the two A-fibrinopeptides (FPA, Aalpha1-16) from normal Aalpha chains with arginine at position 16 (RFPA) by thrombin or the venom enzyme atroxin transforms fibrinogen into self-aggregating fibrin monomers (alpha, Bbeta, gamma)(2). Mutant Aalpha16R-->H fibrinopeptide (HFPA) cannot be cleaved from fibrinogen by atroxin. Many studies on heterozygous dysfibrinogenemias with this mutation suggested that incorporation of the mutant chains into the molecules was ordered in a manner yielding only (1) homodimeric normal (RFPARFPA) atroxin-coagulable molecules and (2) homodimeric abnormal (H(FPA)HFPA) atroxin-incoagulable molecules in equal quantities. Although heterodimeric molecules (RFPAHFPA) could not be found in studies on the intact protein, Meh et al. demonstrated their existence by showing that CNBr digests of fibrinogens from atroxin-treated Aalpha16R-->H heterozygotic dysfibrinogenemias consistently yielded N-terminal fragments (NDSKs) with partially resolved electrophoretic bands predominantly in between the NDSKs of fibrinogen and alpha-fibrin. An opportunity to confirm and better quantify the heterodimers arose with the recent development of a method (GPRphoresis) for identifying molecules lacking only one FPA, which is applied here in study of a newly presenting case of an Aalpha16R-->H dysfibrinogenemia, "fibrinogen Amarillo." GPRphoresis uses electrophoretic shifts, staged with GPRP-NH(2) to separate the self-aggregating fibrin monomers lacking both FPAs from weakly aggregating "semifibrin" molecules lacking one FPA An antifibrin alpha17-23 antibody is used to measure and differentiate the semifibrin from fibrinogen with FPA fully intact. Applying GPRphoresis to atroxin digests of fibrinogen Amarillo clearly demonstrated RFPARFPA, RFPAHFPA, and HFPAHFPA molecules in nearly perfect Mendelian 1:2:1 proportions. In turn, the high levels of the semifibrin in the terminal atroxin digests provide genetic phenotypic evidence supporting fidelity of the GPRphoresis method.
纤维蛋白原分子由两组Aα、Bβ和γ链组成,组装成一个通过二硫键连接的双边(Aα、Bβ、γ)2结构。凝血酶或蛇毒酶atroxin从正常Aα链上切割下两个A - 纤维蛋白肽(FPA,Aα1 - 16),其中第16位为精氨酸(RFPA),从而将纤维蛋白原转化为可自我聚集的纤维蛋白单体(α、Bβ、γ)(2)。突变型Aα16R→H纤维蛋白肽(HFPA)不能被atroxin从纤维蛋白原上切割下来。许多关于具有这种突变的杂合性异常纤维蛋白原血症的研究表明,突变链掺入分子的方式是有序的,只会产生(1)等量的同二聚体正常(RFPARFPA)可被atroxin凝固的分子和(2)等量的同二聚体异常(H(FPA)HFPA)不可被atroxin凝固的分子。尽管在对完整蛋白质的研究中未发现异二聚体分子(RFPAHFPA),但Meh等人通过显示atroxin处理的Aα16R→H杂合性异常纤维蛋白原血症的纤维蛋白原的CNBr消化产物始终产生N端片段(NDSKs),其电泳条带部分分辨,主要位于纤维蛋白原和α - 纤维蛋白的NDSKs之间,证明了它们的存在。随着一种用于鉴定仅缺少一个FPA的分子的方法(GPRphoresis)的最新发展,出现了一个确认并更好地定量异二聚体的机会,本文将该方法应用于一个新出现的Aα16R→H异常纤维蛋白原血症病例“纤维蛋白原阿马里洛”的研究中。GPRphoresis利用电泳迁移,通过GPRP - NH(2)进行分级,以将缺少两个FPA的可自我聚集的纤维蛋白单体与缺少一个FPA的弱聚集“半纤维蛋白”分子分开。一种抗纤维蛋白α1�23抗体用于测量并区分半纤维蛋白与FPA完全完整的纤维蛋白原。将GPRphoresis应用于纤维蛋白原阿马里洛的atroxin消化产物,清楚地证明了RFPARFPA、RFPAHFPA和HFPAHFPA分子的比例接近完美的孟德尔1:2:1。反过来,终末atroxin消化产物中高水平的半纤维蛋白提供了遗传表型证据,支持GPRphoresis方法的准确性。