Suppr超能文献

前列腺癌列线图目录。

A catalog of prostate cancer nomograms.

作者信息

Ross P L, Scardino P T, Kattan M W

机构信息

Department of Urology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.

出版信息

J Urol. 2001 May;165(5):1562-8.

Abstract

PURPOSE

Prediction is central to the management of prostate cancer. Nomograms are devices that make predictions. We organized many nomograms for prostate cancer.

MATERIALS AND METHODS

Using MEDLINE a literature search was performed on prostate cancer nomograms from January 1966 to February 2000. We recorded input variables, prediction form, the number of patients used to develop the nomogram and the outcome being predicted. We also recorded the accuracy measures reported by the original authors and whether the nomograms have withstood validation. In addition, we noted whether the nomograms were proprietary or in the public domain. Each nomogram was classified into patient clinical disease state and the outcome being predicted.

RESULTS

The literature search generated 42 published nomograms that may be applied to patients in various clinical stages of disease. Of the 42 nomograms only 18 had undergone validation, of which 2 partially failed. Few nomograms have been compared for predictive superiority and none appears to have been compared with clinical judgment alone.

CONCLUSIONS

Patients with prostate cancer need accurate predictions. Prognostic nomograms are available for many clinical states and outcomes, and may provide the most accurate predictions currently available. Selection among them and progress in this field are hampered by the lack of comparisons for predictive accuracy.

摘要

目的

预测在前列腺癌的管理中至关重要。列线图是用于进行预测的工具。我们整理了许多前列腺癌列线图。

材料与方法

利用MEDLINE对1966年1月至2000年2月期间的前列腺癌列线图进行文献检索。我们记录了输入变量、预测形式、用于构建列线图的患者数量以及所预测的结果。我们还记录了原作者报告的准确性指标以及列线图是否经过验证。此外,我们留意了列线图是专利性质的还是属于公共领域的。每个列线图根据患者临床疾病状态和所预测的结果进行分类。

结果

文献检索得到42篇已发表的列线图,可应用于处于疾病不同临床阶段的患者。在这42个列线图中,仅有18个经过了验证,其中2个部分验证失败。很少有列线图被比较预测优势,且似乎没有与单纯的临床判断进行比较。

结论

前列腺癌患者需要准确的预测。针对多种临床状态和结果都有预后列线图,并且可能提供目前最准确的预测。由于缺乏预测准确性的比较,在这些列线图中进行选择以及该领域的进展受到了阻碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验