Bukhov N G, Kopecky J, Pfündel E E, Klughammer C, Heber U
Julius von Sachs-Institut für Biowissenschaften, Universität Würzburg, 97082 Würzburg, Germany.
Planta. 2001 Apr;212(5-6):739-48. doi: 10.1007/s004250000485.
The relationship between thermal dissipation of light energy (as indicated by the quenching of chlorophyll fluorescence), zeaxanthin availability and protonation reactions was investigated in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst. In the absence of zeaxanthin and actinic illumination, acidification by 20% CO2 in air was incapable of quenching basal, so-called F0 fluorescence either in the moss or in spinach (Spinacia oleracea L.) leaves. However, 1-s light pulses given either every 40, 60 or 200 s increased thermal dissipation as indicated by F0 and Fm quenching in the presence of 20% CO2 in air in the moss, but not in spinach while reaction centres of photosystem II (PSII) were photochemically open. In the moss, a few short light pulses, which were separated by prolonged dark times, were sufficient to raise zeaxanthin levels in the presence of 20% CO2 in air. Simultaneously, quantum efficiency of charge separation in PSII was decreased. Increasing the CO2 concentration beyond 20% further decreased quantum efficiency even in the absence of short light pulses. Under conditions optimal for fluorescence quenching, one molecule of zeaxanthin per reaction centre of PSII was sufficient to decrease quantum efficiency of charge separation in PSII by 50%. Thus, in combination with a protonation reaction, one molecule of zeaxanthin was as efficient at capturing excitation energy as a photochemically open reaction centre. The data are discussed in relation to the interaction between zeaxanthin and thylakoid protonation, which enables effective thermal dissipation of light energy in the antennae of PSII in the moss but not in higher plants when actinic illumination is absent.
在糙叶立碗藓(Rhytidiadelphus squarrosus (Hedw.) Warnst.)中研究了光能热耗散(通过叶绿素荧光淬灭表示)、玉米黄质可用性与质子化反应之间的关系。在没有玉米黄质和光化光照的情况下,空气中20%的二氧化碳酸化无法淬灭苔藓或菠菜(Spinacia oleracea L.)叶片中的基础荧光,即所谓的F0荧光。然而,在空气中含有20%二氧化碳的情况下,每40、60或200秒给予1秒的光脉冲会增加热耗散,这通过苔藓中F0和Fm淬灭表示,但在菠菜中则不会,而此时光系统II(PSII)的反应中心处于光化学开放状态。在苔藓中,几个被长时间黑暗隔开的短光脉冲足以在空气中含有20%二氧化碳的情况下提高玉米黄质水平。同时,PSII中电荷分离的量子效率降低。即使在没有短光脉冲的情况下,将二氧化碳浓度提高到20%以上也会进一步降低量子效率。在荧光淬灭的最佳条件下,PSII每个反应中心一个玉米黄质分子足以使PSII中电荷分离的量子效率降低50%。因此,与质子化反应相结合,一个玉米黄质分子在捕获激发能方面与一个光化学开放的反应中心一样有效。结合玉米黄质与类囊体质子化之间的相互作用对这些数据进行了讨论,这种相互作用使得在没有光化光照时,苔藓中PSII天线中的光能能够有效热耗散,而高等植物中则不能。