Suppr超能文献

中欧空气中硫同位素特征的时间趋势。

Temporal trends in the isotope signature of air-borne sulfur in Central Europe.

作者信息

Novák M, Jacková I, Prechová E

机构信息

Czech Geological Survey, Prague, Czech Republic.

出版信息

Environ Sci Technol. 2001 Jan 15;35(2):255-60. doi: 10.1021/es0000753.

Abstract

In various parts of the Northern hemisphere air-borne S exhibits a seasonality, with isotopically light (i.e., 32S-rich) sulfur predominating in the warm summer months. Such seasonality has been reported from the United States, Canada, Japan, and China. Elevated biological emissions of isotopically light S in summer, a temperature-dependent isotope fractionation accompanying the oxidation of SO2, and heavy rains in winter bringing 34S-rich marine S have been suggested as the controlling mechanisms. In the atmosphere of Central Europe, one of the most severely polluted regions of the world, we have found an opposite seasonal trend: Isotopically light SO2-S predominates in the cold winter months, whereas isotopically heavy SO2-S is typical of the summer. The low delta34S values of air-borne SO2 in winter are influenced by low-delta34S emissions from local coal-burning power plants. The coal contains isotopically light S (mean delta34S of 1.6/1000). Higher demand for electricity during the heating season leads to higher anthropogenic S emission rates in winter. On a yearly basis, atmospheric sulfate S in Central Europe is isotopically heavier than atmospheric SO2-S by 4/1000. Atmospheric oxidation of SO2 is accompanied by an isotope fractionation resulting in 34S-enriched sulfate. In addition to the seasonality in air-borne delta34S(SO2), we report also an interannual trend of 1/1000 yr(-1) toward isotopically light sulfate S in atmospheric deposition. This interannual trend cannot be explained by a change in pollution sources accompanying the present massive environmental cleanup. To investigate the role of biological S emissions from the soil of heavily polluted ecosystems, we conducted a series of laboratory experiments using repacked soil columns and 34S-enriched precipitation under summer and winter temperatures. These experiments indicate that, under summer temperatures, the 34S-labeled precipitation is largely captured by the upper organic-rich soil horizons, a high proportion (53-74%) of S input is revolatilized, and the biologically reemitted S is isotopically light. Under winter temperatures more precipitation S is leached to the bottom of the soil columns. Our experiments have shown that biological emissions in Central Europe can be sizable. Yet, they cannot be singled out in the overall SO2 isotope pattern in the atmosphere. The main reason is continuous, variable (0-4/1000), open-system depletion in 34S in the residual SO2 during the isotopically selective SO2-to-SO4(2-) conversion.

摘要

在北半球的不同地区,大气中的硫呈现出季节性变化,在温暖的夏季,同位素较轻(即富含32S)的硫占主导。美国、加拿大、日本和中国都报道过这种季节性变化。夏季生物源排放的同位素较轻的硫增加、二氧化硫氧化过程中伴随的温度依赖型同位素分馏以及冬季暴雨带来的富含34S的海洋硫被认为是控制机制。在世界上污染最严重的地区之一中欧的大气中,我们发现了相反的季节性趋势:同位素较轻的二氧化硫硫在寒冷的冬季占主导,而同位素较重的二氧化硫硫则是夏季的典型特征。冬季大气中二氧化硫的低δ34S值受当地燃煤发电厂低δ34S排放的影响。这种煤含有同位素较轻的硫(平均δ34S为1.6‰)。供暖季节对电力的需求增加导致冬季人为硫排放率更高。从年度来看,中欧大气中的硫酸盐硫在同位素上比大气中的二氧化硫硫重4‰。二氧化硫的大气氧化伴随着同位素分馏,导致硫酸盐中34S富集。除了大气中δ34S(二氧化硫)的季节性变化外,我们还报告了大气沉降中硫酸盐硫同位素向较轻方向每年1‰的年际变化趋势。这种年际变化趋势无法用当前大规模环境清理过程中污染源的变化来解释。为了研究重度污染生态系统土壤中生物源硫排放的作用,我们在夏季和冬季温度条件下,使用重新装填的土柱和富含34S的降水进行了一系列实验室实验。这些实验表明,在夏季温度条件下,富含34S的降水主要被上部富含有机质的土壤层截留,很大一部分(53 - 74%)的硫输入会重新挥发,生物再排放的硫同位素较轻。在冬季温度条件下,更多的降水硫会淋溶到土柱底部。我们的实验表明,中欧的生物源排放可能相当可观。然而,在大气中二氧化硫的整体同位素模式中,它们无法被单独区分出来。主要原因是在同位素选择性的二氧化硫向硫酸根(SO42-)转化过程中,残留二氧化硫中34S持续、可变(0 - 4‰)的开放系统亏损。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验