Suppr超能文献

人类初级视觉皮层对颜色对比度的选择性适应。

Selective adaptation to color contrast in human primary visual cortex.

作者信息

Engel S A, Furmanski C S

机构信息

Department of Psychology, University of California, Los Angeles, Los Angeles, California 90025, USA.

出版信息

J Neurosci. 2001 Jun 1;21(11):3949-54. doi: 10.1523/JNEUROSCI.21-11-03949.2001.

Abstract

How neural activity produces our experience of color is controversial, because key behavioral results remain at odds with existing physiological data. One important, unexplained property of perception is selective adaptation to color contrast. Prolonged viewing of colored patterns reduces the perceived intensity of similarly colored patterns but leaves other patterns relatively unaffected. We measured the neural basis of this effect using functional magnetic resonance imaging. Subjects viewed low-contrast test gratings that were either red-green (equal and opposite long- and middle-wavelength cone contrast, L-M) or light-dark (equal, same-sign, long- and middle-wavelength cone contrast, L+M). The two types of test gratings generated approximately equal amounts of neural activity in primary visual cortex (V1) before adaptation. After exposure to high-contrast L-M stimuli, the L-M test grating generated less activity in V1 than the L+M grating. Similarly, after adaptation to a high-contrast L+M grating, the L+M test grating generated less activity than the L-M test grating. Behavioral measures of adaptation using the same stimuli showed a similar pattern of results. Our data suggest that primary visual cortex contains large populations of color-selective neurons that can independently adjust their responsiveness after adaptation. The activity of these neural populations showed effects of adaptation that closely matched perceptual experience.

摘要

神经活动如何产生我们对颜色的体验存在争议,因为关键的行为结果与现有的生理数据仍不一致。感知的一个重要且未得到解释的特性是对颜色对比度的选择性适应。长时间观看彩色图案会降低对相似颜色图案的感知强度,但其他图案相对不受影响。我们使用功能磁共振成像测量了这种效应的神经基础。受试者观看低对比度测试光栅,这些光栅要么是红绿色(等幅且相反的长波长和中波长锥体对比度,L-M),要么是明暗(等幅、同号的长波长和中波长锥体对比度,L+M)。在适应之前,这两种类型的测试光栅在初级视觉皮层(V1)中产生的神经活动量大致相等。在暴露于高对比度的L-M刺激后,L-M测试光栅在V1中产生的活动比L+M光栅少。同样,在适应高对比度的L+M光栅后,L+M测试光栅产生的活动比L-M测试光栅少。使用相同刺激进行适应的行为测量显示出类似的结果模式。我们的数据表明,初级视觉皮层包含大量颜色选择性神经元群体,它们在适应后可以独立调整其反应性。这些神经群体的活动显示出与感知体验紧密匹配的适应效应。

相似文献

1
Selective adaptation to color contrast in human primary visual cortex.
J Neurosci. 2001 Jun 1;21(11):3949-54. doi: 10.1523/JNEUROSCI.21-11-03949.2001.
3
Adaptation of oriented and unoriented color-selective neurons in human visual areas.
Neuron. 2005 Feb 17;45(4):613-23. doi: 10.1016/j.neuron.2005.01.014.
4
Specializations for chromatic and temporal signals in human visual cortex.
J Neurosci. 2005 Mar 30;25(13):3459-68. doi: 10.1523/JNEUROSCI.4206-04.2005.
5
Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation.
Eur J Neurosci. 2007 Jan;25(2):491-502. doi: 10.1111/j.1460-9568.2007.05302.x.
6
Neural correlates of color-selective metacontrast in human early retinotopic areas.
J Neurophysiol. 2010 Oct;104(4):2291-301. doi: 10.1152/jn.00923.2009. Epub 2010 Jul 21.
7
Orientation-selective adaptation to first- and second-order patterns in human visual cortex.
J Neurophysiol. 2006 Feb;95(2):862-81. doi: 10.1152/jn.00668.2005. Epub 2005 Oct 12.
8
Orientation-tuned FMRI adaptation in human visual cortex.
J Neurophysiol. 2005 Dec;94(6):4188-95. doi: 10.1152/jn.00378.2005. Epub 2005 Aug 24.
9
Orientation and spatial frequency selectivity of adaptation to color and luminance gratings.
Vision Res. 1988;28(7):841-56. doi: 10.1016/0042-6989(88)90031-4.
10
Color signals in human motion-selective cortex.
Neuron. 1999 Dec;24(4):901-9. doi: 10.1016/s0896-6273(00)81037-5.

引用本文的文献

1
Color contrast adaptation and compensation in color deficiencies.
J Vis. 2025 Aug 1;25(10):17. doi: 10.1167/jov.25.10.17.
3
Temporal dynamics of face adaptation.
J Vis. 2022 Oct 4;22(11):14. doi: 10.1167/jov.22.11.14.
4
Magnetoencephalography contrast adaptation reflects perceptual adaptation.
J Vis. 2022 Sep 2;22(10):16. doi: 10.1167/jov.22.10.16.
6
Color Sensitivity of the Duration Aftereffect Depends on Sub- and Supra-second Durations.
Front Psychol. 2022 Mar 22;13:858457. doi: 10.3389/fpsyg.2022.858457. eCollection 2022.
7
Electrophysiological evidence for higher-level chromatic mechanisms in humans.
J Vis. 2021 Aug 2;21(8):12. doi: 10.1167/jov.21.8.12.
8
History Modulates Early Sensory Processing of Salient Distractors.
J Neurosci. 2021 Sep 22;41(38):8007-8022. doi: 10.1523/JNEUROSCI.3099-20.2021. Epub 2021 Jul 30.
9
Color Compensation in Anomalous Trichromats Assessed with fMRI.
Curr Biol. 2021 Mar 8;31(5):936-942.e4. doi: 10.1016/j.cub.2020.11.039. Epub 2020 Dec 15.
10
Visual mode switching learned through repeated adaptation to color.
Elife. 2020 Dec 15;9:e61179. doi: 10.7554/eLife.61179.

本文引用的文献

1
An opponent-process theory of color vision.
Psychol Rev. 1957 Nov;64, Part 1(6):384-404. doi: 10.1037/h0041403.
2
Response of single cells in monkey lateral geniculate nucleus to monochromatic light.
Science. 1958 Jan 31;127(3292):238-9. doi: 10.1126/science.127.3292.238.
4
Adaptation-induced plasticity of orientation tuning in adult visual cortex.
Neuron. 2000 Oct;28(1):287-98. doi: 10.1016/s0896-6273(00)00103-3.
5
Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo.
J Neurosci. 2000 Jun 1;20(11):4267-85. doi: 10.1523/JNEUROSCI.20-11-04267.2000.
6
An oblique effect in human primary visual cortex.
Nat Neurosci. 2000 Jun;3(6):535-6. doi: 10.1038/75702.
7
Neuronal basis of contrast discrimination.
Vision Res. 1999 Jan;39(2):257-69. doi: 10.1016/s0042-6989(98)00113-8.
8
Adaptation to contingencies in macaque primary visual cortex.
Philos Trans R Soc Lond B Biol Sci. 1997 Aug 29;352(1358):1149-54. doi: 10.1098/rstb.1997.0098.
10
A tonic hyperpolarization underlying contrast adaptation in cat visual cortex.
Science. 1997 May 9;276(5314):949-52. doi: 10.1126/science.276.5314.949.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验