Suppr超能文献

多类学习问题中输出编码的随机组织

Stochastic organization of output codes in multiclass learning problems.

作者信息

Utschick W, Weichselberger W

机构信息

Institute for Network Theory and Signal Processing, Munich University of Technology, D-80290 Munich, Germany.

出版信息

Neural Comput. 2001 May;13(5):1065-102. doi: 10.1162/08997660151134334.

Abstract

The best-known decomposition schemes of multiclass learning problems are one per class coding (OPC) and error-correcting output coding (ECOC). Both methods perform a prior decomposition, that is, before training of the classifier takes place. The impact of output codes on the inferred decision rules can be experienced only after learning. Therefore, we present a novel algorithm for the code design of multiclass learning problems. This algorithm applies a maximum-likelihood objective function in conjunction with the expectation-maximization (EM) algorithm. Minimizing the augmented objective function yields the optimal decomposition of the multiclass learning problem in two-class problems. Experimental results show the potential gain of the optimized output codes over OPC or ECOC methods.

摘要

多类学习问题中最著名的分解方案是一类一编码(OPC)和纠错输出编码(ECOC)。这两种方法都进行预分解,即在分类器训练之前进行。输出码对推断出的决策规则的影响只有在学习之后才能体现出来。因此,我们提出了一种用于多类学习问题编码设计的新算法。该算法将最大似然目标函数与期望最大化(EM)算法结合使用。最小化增强目标函数可得到多类学习问题在二类问题中的最优分解。实验结果表明,优化后的输出码相对于OPC或ECOC方法具有潜在的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验