Suominen L, Roos C, Lortet G, Paulin L, Lindström K
Department of Applied Chemistry and Microbiology, Institute of Biotechnology, University of Helsinki, Biocenter 1, FIN-00014 Helsinki, Finland.
Mol Biol Evol. 2001 Jun;18(6):907-16. doi: 10.1093/oxfordjournals.molbev.a003891.
Rhizobia are soil bacteria able to fix atmospheric nitrogen in symbiosis with leguminous plants. In response to a signal cascade coded by genes of both symbiotic partners, a specific plant organ, the nodule, is formed. Rhizobial nodulation (nod) genes trigger nodule formation through the synthesis of Nod factors, a family of chitolipooligosaccharides that are specifically recognized by the host plant at the first stages of the nodulation process. Here, we present the organization and sequence of the common nod genes from Rhizobium galegae, a symbiotic member of the RHIZOBIACEAE: This species has an intriguing phylogenetic position, being symbiotic among pathogenic agrobacteria, which induce tumors instead of nodules in plant shoots or roots. This apparent incongruence raises special interest in the origin of the symbiotic apparatus of R. galegae. Our analysis of DNA sequence data indicated that the organization of the common nod gene region of R. galegae was similar to that of Sinorhizobium meliloti and Rhizobium leguminosarum, with nodIJ downstream of nodABC and the regulatory nodD gene closely linked to the common nod operon. Moreover, phylogenetic analyses of the nod gene sequences showed a close relationship especially between the common nodA sequences of R. galegae, S. meliloti, and R. leguminosarum biovars viciae and trifolii. This relationship in structure and sequence contrasts with the phylogeny based on 16S rRNA, which groups R. galegae close to agrobacteria and separate from most other rhizobia. The topology of the nodA tree was similar to that of the corresponding host plant tree. Taken together, these observations indicate that lateral nod gene transfer occurred from fast-growing rhizobia toward agrobacteria, after which the symbiotic apparatus evolved under host plant constraint.
根瘤菌是一类能与豆科植物共生固氮的土壤细菌。在共生双方基因编码的信号级联反应作用下,植物会形成特定器官——根瘤。根瘤菌的结瘤(nod)基因通过合成Nod因子触发根瘤形成,Nod因子是一类壳寡糖脂,在根瘤形成过程的最初阶段被宿主植物特异性识别。在此,我们展示了来自豆科根瘤菌(Rhizobium galegae)的常见nod基因的结构和序列,豆科根瘤菌是根瘤菌科的共生成员:该物种具有有趣的系统发育地位,它在致病性土壤杆菌中具有共生关系,而致病性土壤杆菌会在植物茎或根中诱导形成肿瘤而非根瘤。这种明显的不一致引发了对豆科根瘤菌共生机制起源的特别关注。我们对DNA序列数据的分析表明,豆科根瘤菌常见nod基因区域的结构与苜蓿中华根瘤菌(Sinorhizobium meliloti)和豌豆根瘤菌(Rhizobium leguminosarum)相似,nodIJ位于nodABC下游,调控性nodD基因与常见nod操纵子紧密相连。此外,nod基因序列的系统发育分析表明,特别是豆科根瘤菌、苜蓿中华根瘤菌以及豌豆根瘤菌生物变种蚕豆和三叶草的常见nodA序列之间关系密切。这种结构和序列上的关系与基于16S rRNA的系统发育不同,基于16S rRNA的系统发育将豆科根瘤菌归为接近土壤杆菌的类群,与大多数其他根瘤菌分开。nodA基因树的拓扑结构与相应宿主植物树的拓扑结构相似。综上所述,这些观察结果表明,nod基因从快速生长的根瘤菌侧向转移到土壤杆菌,之后共生机制在宿主植物的限制下进化。