Gysemans C A, Pavlovic D, Bouillon R, Eizirik D L, Mathieu C
Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, Belgium.
Diabetologia. 2001 May;44(5):567-74. doi: 10.1007/s001250051662.
AIMS/HYPOTHESIS: Disruption of the interferon-gamma (IFN-gamma) signalling pathway at the level of interferon regulatory factor-1 (IRF-1) protects islets against cytokine-induced nitric oxide production and cell death in vitro. The aim of this study was to investigate the effects of a global disruption of IFN-gamma signalling, or a selective disruption of IRF-1, on beta-cell sensitivity to in vivo immune destruction.
In a first set of experiments, IFN-gamma receptor knockout mice (IFN-gammaR-/-) and interferon regulatory factor-1 knockout mice (IRF-1-/-) were rendered diabetic by injections of 50 mg streptozotocin i. p. on 5 consecutive days (MLDSTZ).
Whereas no difference in sensitivity to MLDSTZ-induced diabetes could be observed between IFN-gammaR-/- mice and their 129/Sv/Ev controls (50% vs 55%, NS), there was an increased incidence of diabetes in IRF-1-/- mice (100% vs 67% in C57B1/6 mice, p < 0.05). A similar increased sensitivity to immune destruction of IRF-1-/- islets was observed when these islets were used as allografts. Islet graft survival rate of IFN-gammaR-/- and 129/Sv/Ev islets, when transplanted in alloxan-diabetic BALB/c recipients, was comparable (12.0 +/- 1.9 days vs 12.9 +/- 2.3 days, NS). Allograft rejection, however, of IRF-1-/- islets by BALB/c recipients occurred more rapidly than following transplantation to their C57B1/6 controls (9.1 +/- 2.0 days vs 13.1 +/- 1.5 days, p < 0.003).
CONCLUSIONS/INTERPRETATION: These data indicate that IFN-gamma signal transduction at the beta-cell level is not essential for immune beta-cell destruction in vivo. Moreover, disruption of the IRF-1 gene in pancreatic islets increases susceptibility to beta-cell killing, suggesting that IRF-1 might be necessary for the expression of putative beta-cell "defence and/or repair" genes.
目的/假设:在干扰素调节因子-1(IRF-1)水平上破坏干扰素-γ(IFN-γ)信号通路可在体外保护胰岛免受细胞因子诱导的一氧化氮生成和细胞死亡。本研究的目的是调查IFN-γ信号的整体破坏或IRF-1的选择性破坏对β细胞体内免疫破坏敏感性的影响。
在第一组实验中,通过连续5天腹腔注射50 mg链脲佐菌素(多次低剂量链脲佐菌素,MLDSTZ)使干扰素-γ受体敲除小鼠(IFN-γR-/-)和干扰素调节因子-1敲除小鼠(IRF-1-/-)患糖尿病。
虽然在IFN-γR-/-小鼠与其129/Sv/Ev对照之间未观察到对MLDSTZ诱导糖尿病的敏感性差异(50%对55%,无显著性差异),但IRF-1-/-小鼠的糖尿病发病率增加(C57B1/6小鼠中为100%对67%,p<0.05)。当将这些胰岛用作同种异体移植时,观察到IRF-1-/-胰岛对免疫破坏的敏感性同样增加。当IFN-γR-/-和129/Sv/Ev胰岛移植到四氧嘧啶糖尿病BALB/c受体中时,胰岛移植存活率相当(12.0±1.9天对12.9±2.3天,无显著性差异)。然而,BALB/c受体对IRF-1-/-胰岛的同种异体移植排斥比移植到其C57B1/6对照中发生得更快(9.1±2.0天对13.1±1.5天,p<0.003)。
结论/解读:这些数据表明,β细胞水平的IFN-γ信号转导对于体内免疫性β细胞破坏并非必不可少。此外,胰腺胰岛中IRF-1基因的破坏增加了对β细胞杀伤的易感性,提示IRF-1可能是假定的β细胞“防御和/或修复”基因表达所必需的。