Campbell K A, Lashley M R, Wyatt J K, Nantz M H, Britt R D
Department of Chemistry, University of California, Davis, California 95616, USA.
J Am Chem Soc. 2001 Jun 20;123(24):5710-9. doi: 10.1021/ja0027463.
Dual-mode electron paramagnetic resonance (EPR), in which an oscillating magnetic field is alternately applied parallel or perpendicular to the static magnetic field, is a valuable technique for studying both half-integer and integer electron spin systems and is particularly useful for studying transition metals involved in redox chemistry. We have applied this technique to the characterization of the Mn(III) salen (salen = N,N'-ethylene bis(salicylideneaminato)) complex [(R,R)-(-)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III)], with an S = 2 integer electron spin system. Furthermore, we have used dual-mode EPR to study the Mn salen complex during the Mn(III) salen-catalyzed epoxidation of cis-beta-methylstyrene. Our study shows that the additives N-methylmorpholine N-oxide (NMO) and 4-phenylpyridine-N-oxide (4-PPNO), which are used to improve epoxidation yields and enantioselection, bind to the Mn(III) center prior to the epoxidation reaction, as evidenced by the alteration of the Mn(III) parallel mode EPR signal. With these additives as ligands, the axial zero-field splitting values and (55)Mn hyperfine splitting of the parallel mode signal are indicative of an axially elongated octahedral geometry about the Mn(III) center. Since the dual-mode EPR technique allows the observation of both integer and half-integer electron spin systems, Mn oxidation states of II, III, IV, and potentially V can be observed in the same sample as well as any radical intermediates or Mn(III,IV) dinuclear clusters formed during the Mn(III) salen-catalyzed epoxidation reaction. Indeed, our study revealed the formation of a Mn(III,IV) dinuclear cluster in direct correlation with expoxide formation. In addition to showing the possible reaction intermediates, dual-mode EPR offers insight into the mechanism of catalyst degradation and formation of unwanted byproducts. The dual-mode technique may therefore prove valuable for elucidating the mechanism of Mn(III) salen catalyzed reactions and ultimately for designing optimum catalytic conditions (solvents, oxidants, and additives such as NMO or 4-PPNO).
双模式电子顺磁共振(EPR)是一种用于研究半整数和整数电子自旋系统的重要技术,在该技术中,振荡磁场交替地平行或垂直于静磁场施加,它对于研究参与氧化还原化学的过渡金属特别有用。我们已将此技术应用于表征具有S = 2整数电子自旋系统的Mn(III)萨伦(萨伦=N,N'-亚乙基双(水杨醛氨基))配合物[(R,R)-(-)-N,N'-双(3,5-二叔丁基水杨醛)-1,2-环己二胺锰(III)]。此外,我们使用双模式EPR研究了Mn萨伦配合物在Mn(III)萨伦催化顺式β-甲基苯乙烯环氧化过程中的情况。我们的研究表明,用于提高环氧化产率和对映选择性的添加剂N-甲基吗啉N-氧化物(NMO)和4-苯基吡啶-N-氧化物(4-PPNO)在环氧化反应之前与Mn(III)中心结合,这由Mn(III)平行模式EPR信号的改变所证明。以这些添加剂作为配体,平行模式信号的轴向零场分裂值和(55)Mn超精细分裂表明围绕Mn(III)中心存在轴向拉长的八面体几何结构。由于双模式EPR技术允许观察整数和半整数电子自旋系统,因此在同一样品中可以观察到Mn的II、III、IV以及可能的V氧化态,以及在Mn(III)萨伦催化的环氧化反应过程中形成的任何自由基中间体或Mn(III,IV)双核簇。实际上,我们的研究揭示了Mn(III,IV)双核簇的形成与环氧化物的形成直接相关。除了显示可能的反应中间体外,双模式EPR还深入了解了催化剂降解和不需要的副产物形成的机制。因此,双模式技术对于阐明Mn(III)萨伦催化反应的机制以及最终设计最佳催化条件(溶剂、氧化剂和添加剂如NMO或4-PPNO)可能具有重要价值。