Burger T, Lang E W
Institute of Biophysics, Universität Regensburg, Germany.
Z Naturforsch C J Biosci. 2001 May-Jun;56(5-6):464-78. doi: 10.1515/znc-2001-5-622.
A nonlinear, recurrent neural network model of the visual cortex is presented. Orientation maps emerge from adaptable afferent as well as plastic local intracortical circuits driven by random input stimuli. Lateral coupling structures self-organize into DOG profiles under the influence of pronounced emerging cortical activity blobs. The model's simplified architecture and features are modeled to largely mimik neurobiological findings.
提出了一种视觉皮层的非线性循环神经网络模型。方向图由适应性传入神经以及由随机输入刺激驱动的可塑性局部皮层内回路产生。在明显出现的皮层活动斑点的影响下,横向耦合结构自组织成DOG轮廓。该模型的简化架构和特征旨在很大程度上模仿神经生物学发现。