Ji W, Gao E, Suga N
Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
J Neurophysiol. 2001 Jul;86(1):211-25. doi: 10.1152/jn.2001.86.1.211.
In the big brown bat (Eptesicus fuscus), conditioning with acoustic stimuli followed by electric leg-stimulation causes shifts in frequency-tuning curves and best frequencies (hereafter BF shifts) of collicular and cortical neurons, i.e., reorganization of the cochleotopic (frequency) maps in the inferior colliculus (IC) and auditory cortex (AC). The collicular BF shift recovers 180 min after the conditioning, but the cortical BF shift lasts longer than 26 h. The collicular BF shift is not caused by conditioning, as the AC is inactivated during conditioning. Therefore it has been concluded that the collicular BF shift is caused by the corticofugal auditory system. The collicular and cortical BF shifts both are not caused by conditioning as the somatosensory cortex is inactivated during conditioning. Therefore it has been hypothesized that the cortical BF shift is mostly caused by both the subcortical (e.g., collicular) BF shift and the activity of nonauditory systems such as the somatosensory cortex excited by an unconditioned leg-stimulation and the cholinergic basal forebrain. The main aims of our present studies are to examine whether acetylcholine (ACh) applied to the AC augments the collicular and cortical BF shifts caused by the conditioning and whether atropine applied to the AC abolishes the cortical BF shift but not the collicular BF shift, as expected from the preceding hypothesis. In the awake bat, we made the following findings. ACh applied to the AC augments not only the cortical BF shift but also the collicular BF shift through the corticofugal system. Atropine applied to the AC reduces the collicular BF shift and abolishes the cortical BF shift which otherwise would be caused. ACh applied to the IC significantly augments the collicular BF shift but affects the cortical BF shift only slightly. ACh makes the cortical BF shift long-lasting beyond 4 h, but it cannot make the collicular BF shift long-lasting beyond 3 h. Atropine applied to the IC abolishes the collicular BF shift. It reduces the cortical BF shift but does not abolish it. Our findings favor the hypothesis that the BF shifts evoked by the corticofugal system, and an increased ACh level in the AC evoked by the basal forebrain are both necessary to evoke a long-lasting cortical BF shift.
在大棕蝠(棕蝠)中,用听觉刺激随后进行腿部电刺激进行条件反射,会导致中脑和皮层神经元的频率调谐曲线和最佳频率(以下简称BF偏移)发生变化,即下丘(IC)和听觉皮层(AC)中蜗轴(频率)图谱的重组。条件反射后180分钟,中脑的BF偏移恢复,但皮层的BF偏移持续超过26小时。中脑的BF偏移不是由条件反射引起的,因为在条件反射过程中AC被灭活。因此得出结论,中脑的BF偏移是由皮质-听觉系统引起的。中脑和皮层的BF偏移都不是由条件反射引起的,因为在条件反射过程中体感皮层被灭活。因此有人推测,皮层的BF偏移主要是由皮层下(如中脑)的BF偏移以及非听觉系统的活动引起的,如由非条件腿部刺激和胆碱能基底前脑兴奋的体感皮层。我们目前研究的主要目的是检验应用于AC的乙酰胆碱(ACh)是否会增强由条件反射引起的中脑和皮层的BF偏移,以及应用于AC的阿托品是否会消除皮层的BF偏移,但不会消除中脑的BF偏移,正如先前假设所预期的那样。在清醒的蝙蝠中,我们有以下发现。应用于AC的ACh不仅通过皮质-听觉系统增强了皮层的BF偏移,还增强了中脑的BF偏移。应用于AC的阿托品减少了中脑的BF偏移,并消除了原本会引起的皮层BF偏移。应用于IC的ACh显著增强了中脑的BF偏移,但对皮层BF偏移的影响很小。ACh使皮层的BF偏移持续超过4小时,但不能使中脑的BF偏移持续超过3小时。应用于IC的阿托品消除了中脑的BF偏移。它减少了皮层的BF偏移,但没有消除它。我们的发现支持这样的假设,即皮质-听觉系统引起的BF偏移以及基底前脑引起的AC中ACh水平的升高对于引发持久的皮层BF偏移都是必要的。