Hira T, Hara H, Tomita F
Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
Biosci Biotechnol Biochem. 2001 May;65(5):1007-15. doi: 10.1271/bbb.65.1007.
Dietary proteins are recognized by the gastrointestinal tract to display physiological functions, however, the sensory mechanism of the intestinal mucosa is not known. We examined binding properties between the rat small intestinal brush-border membrane (BBM) and proteins by using a surface plasmon resonance biosensor. BBM and solubilized BBM prepared from the rat jejunum bound to casein immobilized on the sensor surface, but not to bovine serum albumin. The ileal BBM showed less binding to casein than the jejunal BBM. Solubilized BBM binding to immobilized alpha-casein was slightly inhibited by aminopeptidase inhibitors, but still more inhibited by addition of casein with the inhibitors. Guanidinated casein inhibited the solubilized BBM binding to alpha-casein more strongly than casein (casein sodium and alpha-casein) inhibited. Trypsinization of solubilized BBM abolished its binding activity to alpha-casein. These results indicate that some membrane protein, but not aminopeptidases, contained in BBM interacts with dietary proteins, and that guanidinated casein has a higher affinity for BBM than intact casein. These binding intensities for proteins were closely correlated to physiological responsiveness, and are possibly involved in a sensory system for dietary protein in the intestine.