Moruno-Dávila M A, Solo C G, García-Moreno M, García-Cánovas F, Varón R
Departamento de Química-Física, Escuela Politécnica Superior, Universidad de Castilla-La Mancha, Avda. España, s/n, Campus Universitario, E-02071 Albacete, Spain.
Biosystems. 2001 Jun;61(1):5-14. doi: 10.1016/s0303-2647(01)00117-4.
We present a general kinetic analysis of enzyme catalyzed reactions evolving according to a Michaelis-Menten mechanism, in which an uncompetitive, reversible inhibitor acts. Simultaneously, enzyme inactivation is induced by an unstable suicide substrate, i.e. it is a Michaelis-Menten mechanism with double inhibition: one originating from the substrate and another originating from the reversible inhibitor. Rapid equilibrium of the reversible reaction steps involved is assumed and the time course equations for the reaction product have been derived under the assumption of limiting enzyme. The goodness of the analytical solutions has been tested by comparison with simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested.
我们对根据米氏机制进行的酶催化反应进行了一般动力学分析,其中存在非竞争性可逆抑制剂。同时,不稳定的自杀底物会诱导酶失活,即这是一种具有双重抑制作用的米氏机制:一种抑制源于底物,另一种源于可逆抑制剂。假设所涉及的可逆反应步骤快速达到平衡,并在酶量有限的假设下推导了反应产物的时间进程方程。通过与数值积分得到的模拟曲线进行比较,检验了解析解的拟合优度。提出了一种动力学数据分析方法,用于根据产物的时间进程曲线确定相应的动力学参数。