Suppr超能文献

历史概述:在所有推荐的地方寻找复制帮助。

Historical overview: searching for replication help in all of the rec places.

作者信息

Cox M M

机构信息

Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706-1544, USA.

出版信息

Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8173-80. doi: 10.1073/pnas.131004998.

Abstract

For several decades, research into the mechanisms of genetic recombination proceeded without a complete understanding of its cellular function or its place in DNA metabolism. Many lines of research recently have coalesced to reveal a thorough integration of most aspects of DNA metabolism, including recombination. In bacteria, the primary function of homologous genetic recombination is the repair of stalled or collapsed replication forks. Recombinational DNA repair of replication forks is a surprisingly common process, even under normal growth conditions. The new results feature multiple pathways for repair and the involvement of many enzymatic systems. The long-recognized integration of replication and recombination in the DNA metabolism of bacteriophage T4 has moved into the spotlight with its clear mechanistic precedents. In eukaryotes, a similar integration of replication and recombination is seen in meiotic recombination as well as in the repair of replication forks and double-strand breaks generated by environmental abuse. Basic mechanisms for replication fork repair can now inform continued research into other aspects of recombination. This overview attempts to trace the history of the search for recombination function in bacteria and their bacteriophages, as well as some of the parallel paths taken in eukaryotic recombination research.

摘要

几十年来,对基因重组机制的研究在对其细胞功能或在DNA代谢中的地位缺乏全面了解的情况下进行。最近,许多研究方向汇聚在一起,揭示了DNA代谢(包括重组)大多数方面的全面整合。在细菌中,同源基因重组的主要功能是修复停滞或崩溃的复制叉。即使在正常生长条件下,复制叉的重组DNA修复也是一个惊人的常见过程。新的研究结果突出了多种修复途径以及许多酶系统的参与。长期以来人们认识到噬菌体T4的DNA代谢中复制与重组的整合,随着其明确的机制先例而备受关注。在真核生物中,在减数分裂重组以及对环境损伤产生的复制叉和双链断裂的修复中也可以看到复制与重组的类似整合。复制叉修复的基本机制现在可以为重组其他方面的持续研究提供参考。本综述试图追溯在细菌及其噬菌体中寻找重组功能的历史,以及真核生物重组研究中所采取的一些平行路径。

相似文献

1
Historical overview: searching for replication help in all of the rec places.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8173-80. doi: 10.1073/pnas.131004998.
2
DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8461-8. doi: 10.1073/pnas.151260698.
3
Recombinational DNA repair in bacteria and the RecA protein.
Prog Nucleic Acid Res Mol Biol. 1999;63:311-66. doi: 10.1016/s0079-6603(08)60726-6.
4
Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda.
Microbiol Mol Biol Rev. 1999 Dec;63(4):751-813, table of contents. doi: 10.1128/MMBR.63.4.751-813.1999.
5
Presynaptic filament dynamics in homologous recombination and DNA repair.
Crit Rev Biochem Mol Biol. 2011 Jun;46(3):240-70. doi: 10.3109/10409238.2011.576007.
6
Interplay between DNA replication and recombination in prokaryotes.
Annu Rev Microbiol. 2005;59:43-67. doi: 10.1146/annurev.micro.59.030804.121255.
7
The bacterial RecA protein and the recombinational DNA repair of stalled replication forks.
Annu Rev Biochem. 2002;71:71-100. doi: 10.1146/annurev.biochem.71.083101.133940. Epub 2001 Nov 9.
9
Recombinational DNA repair of damaged replication forks in Escherichia coli: questions.
Annu Rev Genet. 2001;35:53-82. doi: 10.1146/annurev.genet.35.102401.090016.

引用本文的文献

1
The strand exchange domain of tumor suppressor PALB2 is intrinsically disordered and promotes oligomerization-dependent DNA compaction.
iScience. 2024 Oct 28;27(12):111259. doi: 10.1016/j.isci.2024.111259. eCollection 2024 Dec 20.
3
RecA and SSB genome-wide distribution in ssDNA gaps and ends in Escherichia coli.
Nucleic Acids Res. 2023 Jun 23;51(11):5527-5546. doi: 10.1093/nar/gkad263.
4
Genomic landscape of single-stranded DNA gapped intermediates in Escherichia coli.
Nucleic Acids Res. 2022 Jan 25;50(2):937-951. doi: 10.1093/nar/gkab1269.
5
The rarA gene as part of an expanded RecFOR recombination pathway: Negative epistasis and synthetic lethality with ruvB, recG, and recQ.
PLoS Genet. 2021 Dec 22;17(12):e1009972. doi: 10.1371/journal.pgen.1009972. eCollection 2021 Dec.
6
Direct unfolding of RuvA-HJ complex at the single-molecule level.
Biophys J. 2021 May 18;120(10):1894-1902. doi: 10.1016/j.bpj.2021.03.006. Epub 2021 Mar 16.
7
RecA-independent recombination: Dependence on the Escherichia coli RarA protein.
Mol Microbiol. 2021 Jun;115(6):1122-1137. doi: 10.1111/mmi.14655. Epub 2020 Dec 19.
9
Bridging length scales to measure polymer assembly.
Mol Biol Cell. 2017 May 15;28(10):1379-1388. doi: 10.1091/mbc.E16-05-0344. Epub 2017 Mar 29.
10
DNA flap creation by the RarA/MgsA protein of Escherichia coli.
Nucleic Acids Res. 2017 Mar 17;45(5):2724-2735. doi: 10.1093/nar/gkw1322.

本文引用的文献

1
ISOLATION AND CHARACTERIZATION OF RECOMBINATION-DEFICIENT MUTANTS OF ESCHERICHIA COLI K12.
Proc Natl Acad Sci U S A. 1965 Feb;53(2):451-9. doi: 10.1073/pnas.53.2.451.
2
Chromosome brekage accompanying genetic recombination in bacteriophage.
Proc Natl Acad Sci U S A. 1961 Jun 15;47(6):857-68. doi: 10.1073/pnas.47.6.857.
3
Recombinational DNA repair of damaged replication forks in Escherichia coli: questions.
Annu Rev Genet. 2001;35:53-82. doi: 10.1146/annurev.genet.35.102401.090016.
4
DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8461-8. doi: 10.1073/pnas.151260698.
6
RuvABC-dependent double-strand breaks in dnaBts mutants require recA.
Mol Microbiol. 2000 Nov;38(3):565-74. doi: 10.1046/j.1365-2958.2000.02152.x.
7
Positive torsional strain causes the formation of a four-way junction at replication forks.
J Biol Chem. 2001 Jan 26;276(4):2790-6. doi: 10.1074/jbc.M006736200. Epub 2000 Oct 30.
8
Resolution of holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells.
Mol Microbiol. 2000 Jul;37(1):180-91. doi: 10.1046/j.1365-2958.2000.01989.x.
9
Architecture of the replication fork stalled at the 3' end of yeast ribosomal genes.
Mol Cell Biol. 2000 Aug;20(15):5777-87. doi: 10.1128/MCB.20.15.5777-5787.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验