Hishida T, Iwasaki H, Ohno T, Morishita T, Shinagawa H
Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8283-9. doi: 10.1073/pnas.121009098.
Changes in DNA superhelicity during DNA replication are mediated primarily by the activities of DNA helicases and topoisomerases. If these activities are defective, the progression of the replication fork can be hindered or blocked, which can lead to double-strand breaks, elevated recombination in regions of repeated DNA, and genome instability. Hereditary diseases like Werner's and Bloom's Syndromes are caused by defects in DNA helicases, and these diseases are associated with genome instability and carcinogenesis in humans. Here we report a Saccharomyces cerevisiae gene, MGS1 (Maintenance of Genome Stability 1), which encodes a protein belonging to the AAA(+) class of ATPases, and whose central region is similar to Escherichia coli RuvB, a Holliday junction branch migration motor protein. The Mgs1 orthologues are highly conserved in prokaryotes and eukaryotes. The Mgs1 protein possesses DNA-dependent ATPase and single-strand DNA annealing activities. An mgs1 deletion mutant has an elevated rate of mitotic recombination, which causes genome instability. The mgs1 mutation is synergistic with a mutation in top3 (encoding topoisomerase III), and the double mutant exhibits severe growth defects and markedly increased genome instability. In contrast to the mgs1 mutation, a mutation in the sgs1 gene encoding a DNA helicase homologous to the Werner and Bloom helicases suppresses both the growth defect and the increased genome instability of the top3 mutant. Therefore, evolutionarily conserved Mgs1 may play a role together with RecQ family helicases and DNA topoisomerases in maintaining proper DNA topology, which is essential for genome stability.
DNA复制过程中DNA超螺旋的变化主要由DNA解旋酶和拓扑异构酶的活性介导。如果这些活性存在缺陷,复制叉的进展可能会受到阻碍或阻断,这可能导致双链断裂、重复DNA区域的重组增加以及基因组不稳定。像沃纳综合征和布卢姆综合征这样的遗传性疾病是由DNA解旋酶缺陷引起的,这些疾病与人类的基因组不稳定和致癌作用有关。在这里,我们报道了一种酿酒酵母基因MGS1(基因组稳定性维持1),它编码一种属于AAA(+)类ATP酶的蛋白质,其中心区域与大肠杆菌RuvB(一种霍利迪连接分支迁移运动蛋白)相似。Mgs1直系同源物在原核生物和真核生物中高度保守。Mgs1蛋白具有依赖DNA的ATP酶和单链DNA退火活性。mgs1缺失突变体的有丝分裂重组率升高,这导致基因组不稳定。mgs1突变与top3(编码拓扑异构酶III)突变具有协同作用,双突变体表现出严重的生长缺陷和明显增加的基因组不稳定。与mgs1突变相反,编码与沃纳和布卢姆解旋酶同源的DNA解旋酶的sgs1基因突变抑制了top3突变体的生长缺陷和增加的基因组不稳定。因此,进化上保守的Mgs1可能与RecQ家族解旋酶和DNA拓扑异构酶一起在维持适当的DNA拓扑结构中发挥作用,这对基因组稳定性至关重要。